Skip to content

Commit

Permalink
Merge pull request #7 from edahelsinki/update_references
Browse files Browse the repository at this point in the history
Update references
  • Loading branch information
Aggrathon authored Nov 25, 2022
2 parents 43fd10e + 9d2f4b5 commit 41f286e
Show file tree
Hide file tree
Showing 11 changed files with 64 additions and 23 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/python-pytest.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]

steps:
- uses: actions/checkout@v2
Expand Down
32 changes: 23 additions & 9 deletions CITATIONS.bib
Original file line number Diff line number Diff line change
@@ -1,13 +1,27 @@
@article{bjorklund2022slisemap,
title = {{SLISEMAP}: Supervised dimensionality reduction through local explanations},
title = {SLISEMAP: supervised dimensionality reduction through local explanations},
shorttitle = {{SLISEMAP}},
author = {Bj{\"o}rklund, Anton and M{\"a}kel{\"a}, Jarmo and Puolam{\"a}ki, Kai},
year = {2022},
journal = {arXiv:2201.04455 [cs]},
eprint = {2201.04455},
eprinttype = {arxiv},
issn = {1573-0565},
url = {https://doi.org/10.1007/s10994-022-06261-1},
doi = {10.1007/s10994-022-06261-1},
number = {arXiv:2201.04455},
journal = {Machine Learning},
author = {Bj{\"o}rklund, Anton and M{\"a}kel{\"a}, Jarmo and Puolam{\"a}ki, Kai},
year = {2022},
month = {Nov},
language = {en}
}

@article{bjorklund2022slisemaparxiv,
title = {{SLISEMAP}: Supervised dimensionality reduction through local explanations},
shorttitle = {{SLISEMAP}},
author = {Bj{\"o}rklund, Anton and M{\"a}kel{\"a}, Jarmo and Puolam{\"a}ki, Kai},
year = {2022},
journal = {arXiv:2201.04455 [cs]},
eprint = {2201.04455},
eprinttype = {arxiv},
primaryclass = {cs},
url = {http://arxiv.org/abs/2201.04455},
doi = {10.48550/ARXIV.2201.04455},
publisher = {arXiv}
url = {http://arxiv.org/abs/2201.04455},
doi = {10.48550/ARXIV.2201.04455},
publisher = {arXiv}
}
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
[![PyPI](https://img.shields.io/pypi/v/slise)](https://pypi.org/project/slisemap/)
[![PyPI](https://img.shields.io/pypi/v/slisemap)](https://pypi.org/project/slisemap/)
[![Documentation](https://github.com/edahelsinki/slisemap/actions/workflows/python-docs.yml/badge.svg)](https://edahelsinki.github.io/slisemap/slisemap/)
[![Tests](https://github.com/edahelsinki/slisemap/actions/workflows/python-pytest.yml/badge.svg)](https://github.com/edahelsinki/slisemap/actions/workflows/python-pytest.yml)
[![Licence: MIT](https://img.shields.io/github/license/edahelsinki/slisemap)](https://github.com/edahelsinki/slisemap/blob/master/LICENSE)
Expand All @@ -8,14 +8,14 @@

SLISEMAP is a supervised dimensionality reduction method, that takes data, in the form of vectors, and predictions from a *black box* regression or classification model as input. SLISEMAP then simultaneously finds local explanations for all data items and builds a (typically) two-dimensional global visualisation of the black box model such that data items with similar local explanations are projected nearby. The explanations consist of *white box* models that locally approximate the *black box* model.

SLISEMAP is implemented in *Python* using *PyTorch* for efficient optimisation, and optional GPU-acceleration. For more information see the [full paper](https://arxiv.org/abs/2201.04455), the [demo paper](https://github.com/edahelsinki/slisemap/blob/main/examples/demo_paper.pdf), the [demonstration video](https://youtu.be/zvcFYItwRlQ) ([slides](https://github.com/edahelsinki/slisemap/blob/main/examples/demo_presentation.pdf)), the [examples](https://github.com/edahelsinki/slisemap/tree/main/examples), or the [documentation](https://edahelsinki.github.io/slisemap/slisemap).
SLISEMAP is implemented in *Python* using *PyTorch* for efficient optimisation, and optional GPU-acceleration. For more information see the [full paper](https://doi.org/10.1007/s10994-022-06261-1) ([arXiv](https://arxiv.org/abs/2201.04455)), the [demo paper](https://github.com/edahelsinki/slisemap/blob/main/examples/demo_paper.pdf), the [demo video](https://youtu.be/zvcFYItwRlQ) ([slides](https://github.com/edahelsinki/slisemap/blob/main/examples/demo_presentation.pdf)), the [examples](https://github.com/edahelsinki/slisemap/tree/main/examples), or the [documentation](https://edahelsinki.github.io/slisemap/slisemap).


## Citation

> *Björklund, A., Mäkelä, J. & Puolamäki, K. (2022).*
> **SLISEMAP: Supervised dimensionality reduction through local explanations**.
> arXiv:2201.04455 [cs], [https://arxiv.org/abs/2201.04455](https://arxiv.org/abs/2201.04455).
> Machine Learning, [DOI 10.1007/s10994-022-06261-1](https://doi.org/10.1007/s10994-022-06261-1)

## Installation
Expand Down
Binary file modified examples/demo_paper.pdf
Binary file not shown.
Binary file modified examples/demo_presentation.pdf
Binary file not shown.
2 changes: 1 addition & 1 deletion experiments/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,4 @@
This directory contains the experiments for the paper.
The scripts are also used to produce the plots and tables in the paper.
Running all experiments sequentially would take hundreds of hours, but cached results from the experiments can be found [here](https://github.com/edahelsinki/slisemap/tree/data/results).
The results can also be seen in [the paper](https://arxiv.org/abs/2201.04455).
The results can also be seen in [the paper](https://doi.org/10.1007/s10994-022-06261-1).
4 changes: 3 additions & 1 deletion mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,9 @@ nav:
- Links:
- GitHub: https://github.com/edahelsinki/slisemap
- PyPI: https://pypi.org/project/slisemap/
- Paper: https://arxiv.org/abs/2201.04455
- Paper: https://doi.org/10.1007/s10994-022-06261-1
- arXiv: https://arxiv.org/abs/2201.04455
- Demo Video: https://youtu.be/zvcFYItwRlQ
- Demo Paper: https://github.com/edahelsinki/slisemap/blob/main/examples/demo_paper.pdf
- Presentation: https://github.com/edahelsinki/slisemap/blob/main/examples/demo_presentation.pdf
- Examples: https://github.com/edahelsinki/slisemap/tree/main/examples
Expand Down
2 changes: 1 addition & 1 deletion setup.cfg
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[metadata]
name = slisemap
version = 1.2.0
version = 1.2.1
author = Anton Björklund, Jarmo Mäkelä, and Kai Puolamäki
author_email = anton.bjorklund@helsinki.fi, jarmo.makela@helsinki.fi, kai.puolamaki@helsinki.fi
description = SLISEMAP: Combine local explanations with supervised dimensionality reduction
Expand Down
9 changes: 5 additions & 4 deletions slisemap/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,15 +9,16 @@
items with similar local explanations are projected nearby. The explanations consists of
"white box" models that locally approximate the "black box" model.
SLISEMAP uses *PyTorch* for efficient optimisation, and optional GPU-acceleration. For
more information see the the [repository](https://github.com/edahelsinki/slisemap) or
the [paper](https://arxiv.org/abs/2201.04455).
SLISEMAP uses *PyTorch* for efficient optimisation, and optional GPU-acceleration.
For more information see the the [repository](https://github.com/edahelsinki/slisemap),
the [documentation](https://edahelsinki.github.io/slisemap/slisemap), or the
[paper](https://doi.org/10.1007/s10994-022-06261-1).
Citation
--------
> Björklund, A., Mäkelä, J. & Puolamäki, K. (2022).
> SLISEMAP: Supervised dimensionality reduction through local explanations.
> arXiv:2201.04455 [cs], https://arxiv.org/abs/2201.04455.
> Machine Learning, DOI 10.1007/s10994-022-06261-1.
Example Usage
Expand Down
12 changes: 9 additions & 3 deletions slisemap/slisemap.py
Original file line number Diff line number Diff line change
Expand Up @@ -364,13 +364,16 @@ def local_model(self, value: Callable[[torch.Tensor, torch.Tensor], torch.Tensor
@property
def local_loss(
self,
) -> Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]:
) -> Callable[[torch.Tensor, torch.Tensor, Optional[torch.Tensor]], torch.Tensor]:
# Local model loss function. Takes in Ytilde[n, n, o], Y[n, o], and B[n, q], and returns L[n, n]
return self._local_loss

@local_loss.setter
def local_loss(
self, value: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
self,
value: Callable[
[torch.Tensor, torch.Tensor, Optional[torch.Tensor]], torch.Tensor
],
):
if self._local_loss != value:
_assert(callable(value), "local_loss must be callable", Slisemap.local_loss)
Expand Down Expand Up @@ -1381,8 +1384,11 @@ def plot_position(
loc="lower center" if inside else "upper right",
bbox_to_anchor=(1 - w, h * 0.35, w * 0.9, h * 0.6) if inside else None,
)
marker = Line2D(
[], [], linestyle="None", color="#fd8431", marker="X", markersize=5
)
g.add_legend(
{"": Line2D([], [], None, "None", "#fd8431", "X", 5)},
{"": marker},
"Selected",
loc="upper center" if inside else "lower right",
bbox_to_anchor=(1 - w, h * 0.05, w * 0.9, h * 0.3) if inside else None,
Expand Down
18 changes: 18 additions & 0 deletions tests/test_slisemap.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,24 @@ def test_lbfgs():
assert l1 >= l2


def test_only_B():
set_seed(653274)
sm = get_slisemap(30, 4)
sm.optimise(1, 3)
sm2 = Slisemap(
X=sm.get_X(intercept=False, numpy=False),
y=sm.get_Y(numpy=False),
radius=sm.radius,
lasso=sm.lasso,
intercept=sm.intercept,
Z0=sm.get_Z(numpy=False),
)
sm2.optimise(1, 3, only_B=True)
assert_allclose(sm.get_Z(), sm2.get_Z())
assert_approx_ge(sm.value(), sm2.value())
sm.lbfgs(only_B=True)


def test_fit_new():
sm, _ = get_slisemap2(60, 5, cheat=True, seed=239177)
sm.lbfgs()
Expand Down

0 comments on commit 41f286e

Please sign in to comment.