Skip to content

Commit

Permalink
Use headings instead of lists or bold text
Browse files Browse the repository at this point in the history
And add languages for code blocks
  • Loading branch information
endolith committed Nov 29, 2024
1 parent 1966b03 commit 33ac4ef
Showing 1 changed file with 87 additions and 59 deletions.
146 changes: 87 additions & 59 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,10 +1,14 @@
## Tools to Design or Visualize Architecture of Neural Network
# Tools to Design or Visualize Architecture of Neural Network

1. [**Net2Vis**](https://viscom.net2vis.uni-ulm.de/OG1Br2BAkYSwwrV6CADl4X5EfErFjUzvuUwXWDdLbdsIXNhb9L): Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.
## [Net2Vis](https://viscom.net2vis.uni-ulm.de/OG1Br2BAkYSwwrV6CADl4X5EfErFjUzvuUwXWDdLbdsIXNhb9L)

Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.

![](https://storage.googleapis.com/groundai-web-prod/media/users/user_299833/project_401171/images/application.png)

2. [**visualkeras**](https://github.com/paulgavrikov/visualkeras/) : Visualkeras is a Python package to help visualize Keras (either standalone or included in tensorflow) neural network architectures. It allows easy styling to fit most needs. As of now it supports layered style architecture generation which is great for CNNs (Convolutional Neural Networks) and a grap style architecture.
## [visualkeras](https://github.com/paulgavrikov/visualkeras/)

Visualkeras is a Python package to help visualize Keras (either standalone or included in tensorflow) neural network architectures. It allows easy styling to fit most needs. As of now it supports layered style architecture generation which is great for CNNs (Convolutional Neural Networks) and a grap style architecture.

```python
import visualkeras
Expand All @@ -18,47 +22,57 @@ visualkeras.layered_view(model, to_file='output.png').show() # write and show
visualkeras.layered_view(model)
```

![](https://github.com/paulgavrikov/visualkeras/raw/master/figures/vgg16.png)
![Visualization of the VGG16 neural network with stacked layers of decreasing size.](https://github.com/paulgavrikov/visualkeras/raw/master/figures/vgg16.png)

3. [**draw_convnet**](https://github.com/gwding/draw_convnet) : Python script for illustrating Convolutional Neural Network (ConvNet)
## [draw_convnet](https://github.com/gwding/draw_convnet)

![img](https://raw.githubusercontent.com/gwding/draw_convnet/master/convnet_fig.png)
Python script for illustrating Convolutional Neural Network (ConvNet)

4. [**NNSVG**](http://alexlenail.me/NN-SVG/LeNet.html)
![img](https://raw.githubusercontent.com/gwding/draw_convnet/master/convnet_fig.png)

![AlexNet style](https://i.stack.imgur.com/Q0xOe.png)
## [NNSVG](http://alexlenail.me/NN-SVG/LeNet.html)

![enter image description here](https://i.stack.imgur.com/K9lmg.png)
![AlexNet style](https://i.stack.imgur.com/Q0xOe.png)

![enter image description here](https://i.stack.imgur.com/DlJ8J.png)
![enter image description here](https://i.stack.imgur.com/K9lmg.png)

5. **[PlotNeuralNet](https://github.com/HarisIqbal88/PlotNeuralNet)** : Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, lets consolidate any improvements that you make and fix any bugs to help more people with this code.
![enter image description here](https://i.stack.imgur.com/DlJ8J.png)

![img](https://user-images.githubusercontent.com/17570785/50308846-c2231880-049c-11e9-8763-3daa1024de78.png)
## [PlotNeuralNet](https://github.com/HarisIqbal88/PlotNeuralNet)

![img](https://user-images.githubusercontent.com/17570785/50308873-e2eb6e00-049c-11e9-9587-9da6bdec011b.png)
Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, lets consolidate any improvements that you make and fix any bugs to help more people with this code.

6. **[Tensorboard](https://www.tensorflow.org/tensorboard/graphs)** - TensorBoard’s **Graphs dashboard** is a powerful tool for examining your TensorFlow model.
![img](https://user-images.githubusercontent.com/17570785/50308846-c2231880-049c-11e9-8763-3daa1024de78.png)

![enter image description here](https://i.stack.imgur.com/zJHpV.png)
![img](https://user-images.githubusercontent.com/17570785/50308873-e2eb6e00-049c-11e9-9587-9da6bdec011b.png)

7. **[Caffe](https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py)** - In Caffe you can use [caffe/draw.py](https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py) to draw the NetParameter protobuffer:
## [Tensorboard](https://www.tensorflow.org/tensorboard/graphs)

![enter image description here](https://i.stack.imgur.com/5Z1Cb.png)
TensorBoard’s **Graphs dashboard** is a powerful tool for examining your TensorFlow model.

8. **[Matlab](http://www.mathworks.com/help/nnet/ref/view.html)**
![enter image description here](https://i.stack.imgur.com/zJHpV.png)

![enter image description here](https://i.stack.imgur.com/rPpfa.png)
## [Caffe](https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py)

9. [**Keras.js**](https://transcranial.github.io/keras-js/#/inception-v3)
In Caffe you can use [caffe/draw.py](https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py) to draw the NetParameter protobuffer:

![enter image description here](https://i.stack.imgur.com/vEfTv.png)
![enter image description here](https://i.stack.imgur.com/5Z1Cb.png)

9. **[keras-sequential-ascii](https://github.com/stared/keras-sequential-ascii/)** - A library for [Keras](https://keras.io/) for investigating architectures and parameters of sequential models.
## [Matlab](http://www.mathworks.com/help/nnet/ref/view.html)

**VGG 16 Architecture**
![enter image description here](https://i.stack.imgur.com/rPpfa.png)

```
## [Keras.js](https://transcranial.github.io/keras-js/#/inception-v3)

![enter image description here](https://i.stack.imgur.com/vEfTv.png)

## [keras-sequential-ascii](https://github.com/stared/keras-sequential-ascii/)

A library for [Keras](https://keras.io/) for investigating architectures and parameters of sequential models.

### VGG 16 Architecture

```text
OPERATION DATA DIMENSIONS WEIGHTS(N) WEIGHTS(%)
Input ##### 3 224 224
Expand Down Expand Up @@ -110,76 +124,90 @@ visualkeras.layered_view(model)
softmax ##### 1000
```

10. **[Netron](https://github.com/lutzroeder/Netron)**
## [Netron](https://github.com/lutzroeder/Netron)

![screenshot.png](https://github.com/lutzroeder/netron/raw/main/.github/screenshot.png)
![screenshot.png](https://github.com/lutzroeder/netron/raw/main/.github/screenshot.png)

11. **[DotNet](https://github.com/martisak/dotnets)**
## [DotNet](https://github.com/martisak/dotnets)

![Simple net](https://github.com/martisak/dotnets/raw/master/test.png)
![Simple net](https://github.com/martisak/dotnets/raw/master/test.png)

12. [**Graphviz**](http://www.graphviz.org/) : **[Tutorial](https://tgmstat.wordpress.com/2013/06/12/draw-neural-network-diagrams-graphviz/)**
## [Graphviz](http://www.graphviz.org/)

![img](https://tgmstat.files.wordpress.com/2013/05/multiclass_neural_network_example.png)
**[Tutorial](https://tgmstat.wordpress.com/2013/06/12/draw-neural-network-diagrams-graphviz/)**

13. **[Keras Visualization](https://keras.io/visualization/)** - The [keras.utils.vis_utils module](https://keras.io/visualization/) provides utility functions to plot a Keras model (using graphviz)
![img](https://tgmstat.files.wordpress.com/2013/05/multiclass_neural_network_example.png)

![enter image description here](https://i.stack.imgur.com/o17GY.png)
## [Keras Visualization](https://keras.io/visualization/)

14. **[Conx](https://conx.readthedocs.io/en/latest/index.html)** - The Python package `conx` can visualize networks with activations with the function `net.picture()` to produce SVG, PNG, or PIL Images like this:
The [keras.utils.vis_utils module](https://keras.io/visualization/) provides utility functions to plot a Keras model (using graphviz)

![enter image description here](https://i.stack.imgur.com/nhHjO.png)
![enter image description here](https://i.stack.imgur.com/o17GY.png)

15. **[ENNUI](https://math.mit.edu/ennui/)** - Working on a drag-and-drop neural network visualizer (and more). Here's an example of a visualization for a LeNet-like architecture.
## [Conx](https://conx.readthedocs.io/en/latest/index.html)

![A visualization of a LeNet-like architecture](https://i.stack.imgur.com/pRLeG.png)
The Python package `conx` can visualize networks with activations with the function `net.picture()` to produce SVG, PNG, or PIL Images like this:

16. **NNet - R Package** - **[Tutorial](https://beckmw.wordpress.com/2013/03/04/visualizing-neural-networks-from-the-nnet-package/)**
![enter image description here](https://i.stack.imgur.com/nhHjO.png)

```
## [ENNUI](https://math.mit.edu/ennui/)

Working on a drag-and-drop neural network visualizer (and more). Here's an example of a visualization for a LeNet-like architecture.

![A visualization of a LeNet-like architecture](https://i.stack.imgur.com/pRLeG.png)

## NNet - R Package

**[Tutorial](https://beckmw.wordpress.com/2013/03/04/visualizing-neural-networks-from-the-nnet-package/)**

```R
data(infert, package="datasets")
plot(neuralnet(case~parity+induced+spontaneous, infert))
```

[![neuralnet](https://i.stack.imgur.com/yyftd.png)](https://
![neuralnet](https://i.stack.imgur.com/yyftd.png)

## [GraphCore](https://www.graphcore.ai/posts/what-does-machine-learning-look-like)

17. **[GraphCore](https://www.graphcore.ai/posts/what-does-machine-learning-look-like)** - These approaches are more oriented towards visualizing neural network operation, however, NN architecture is also somewhat visible on the resulting diagrams.
These approaches are more oriented towards visualizing neural network operation, however, NN architecture is also somewhat visible on the resulting diagrams.

**AlexNet**
### AlexNet

![alexnet_label logo.jpg](https://www.graphcore.ai/hubfs/images/alexnet_label%20logo.jpg)
![alexnet_label logo.jpg](https://www.graphcore.ai/hubfs/images/alexnet_label%20logo.jpg)

**ResNet50**![resnet50_label_logo.jpg](https://www.graphcore.ai/hubfs/images/resnet50_label_logo.jpg)
### ResNet50

18. [**Neataptic**](https://wagenaartje.github.io/neataptic/ )
![resnet50_label_logo.jpg](https://www.graphcore.ai/hubfs/images/resnet50_label_logo.jpg)

## [Neataptic](https://wagenaartje.github.io/neataptic/)

Neataptic offers flexible neural networks; neurons and synapses can be removed with a single line of code. No fixed architecture is required for neural networks to function at all. This flexibility allows networks to be shaped for your dataset through neuro-evolution, which is done using multiple threads.

![img](https://camo.githubusercontent.com/4326c3f603b828b61fd63d927acca2cfc152773f/68747470733a2f2f692e6779617a6f2e636f6d2f66353636643233363461663433646433613738633839323665643230346135312e706e67)
![img](https://camo.githubusercontent.com/4326c3f603b828b61fd63d927acca2cfc152773f/68747470733a2f2f692e6779617a6f2e636f6d2f66353636643233363461663433646433613738633839323665643230346135312e706e67)

19. **[TensorSpace](https://tensorspace.org/)** : TensorSpace is a neural network 3D visualization framework built by TensorFlow.js, Three.js and Tween.js. TensorSpace provides Layer APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. By applying TensorSpace API, it is more intuitive to visualize and understand any pre-trained models built by TensorFlow, Keras, TensorFlow.js, etc.
## [TensorSpace](https://tensorspace.org/)

**[Tutorial](https://www.freecodecamp.org/news/tensorspace-js-a-way-to-3d-visualize-neural-networks-in-browsers-2c0afd7648a8/)**
TensorSpace is a neural network 3D visualization framework built by TensorFlow.js, Three.js and Tween.js. TensorSpace provides Layer APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. By applying TensorSpace API, it is more intuitive to visualize and understand any pre-trained models built by TensorFlow, Keras, TensorFlow.js, etc.

![enter image description here](https://i.stack.imgur.com/ekF5v.png)
**[Tutorial](https://www.freecodecamp.org/news/tensorspace-js-a-way-to-3d-visualize-neural-networks-in-browsers-2c0afd7648a8/)**

![enter image description here](https://i.stack.imgur.com/ekF5v.png)

20. **[Netscope CNN Analyzer](http://dgschwend.github.io/netscope/quickstart.html)**
## [Netscope CNN Analyzer](http://dgschwend.github.io/netscope/quickstart.html)

![enter image description here](https://i.stack.imgur.com/VVDsg.png)
![enter image description here](https://i.stack.imgur.com/VVDsg.png)

21. **[Monial](https://github.com/mlajtos/moniel)**
## [Monial](https://github.com/mlajtos/moniel)

Interactive Notation for Computational Graphs <https://mlajtos.github.io/moniel/>
Interactive Notation for Computational Graphs <https://mlajtos.github.io/moniel/>

![img](https://miro.medium.com/max/819/1*u6uIQF4xTVe-ylJnAPoIDg.png)
![img](https://miro.medium.com/max/819/1*u6uIQF4xTVe-ylJnAPoIDg.png)

22. [**Texample**](http://www.texample.net/tikz/examples/neural-network/)
## [Texample](http://www.texample.net/tikz/examples/neural-network/)

![Neural Network](https://texample.net/media/tikz/examples/PNG/neural-network.png)

```
```latex
\documentclass{article}
\usepackage{tikz}
Expand Down Expand Up @@ -228,11 +256,11 @@ Neataptic offers flexible neural networks; neurons and synapses can be removed w
\end{document}
```

23. [**Quiver**](https://github.com/keplr-io/quiver)
## [Quiver](https://github.com/keplr-io/quiver)

![gzqll3](https://cloud.githubusercontent.com/assets/5866348/20253975/f3d56f14-a9e4-11e6-9693-9873a18df5d3.gif)
![gzqll3](https://cloud.githubusercontent.com/assets/5866348/20253975/f3d56f14-a9e4-11e6-9693-9873a18df5d3.gif)

**References :**
**References:**

1) <https://datascience.stackexchange.com/questions/12851/how-do-you-visualize-neural-network-architectures>

Expand Down

0 comments on commit 33ac4ef

Please sign in to comment.