Skip to content

eogbemi/Bank_Churn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

Bank_Churn

Background and Context

Businesses like banks that provide service have to worry about the problem of 'Churn' i.e. customers leaving and joining another service provider. It is important to understand which aspects of the service influence a customer's decision in this regard. Management can concentrate efforts on the improvement of service, keeping in mind these priorities.

Objective

Given a Bank customer, build a neural network-based classifier that can determine whether they will leave or not in the next 6 months.

Data Description

The case study is from an open-source dataset from Kaggle. The dataset contains 10,000 sample points with 14 distinct features such as CustomerId, CreditScore, Geography, Gender, Age, Tenure, Balance, etc.