Skip to content

Commit

Permalink
Tiled VAE: fix bug with pathologic size (tile size - overlap + 1)
Browse files Browse the repository at this point in the history
This fixes the error:

> The size of tensor a (128) must match the size of tensor b (0)
> at non-singleton dimension 0
  • Loading branch information
catwell committed Nov 28, 2024
1 parent e708c31 commit 05a5959
Show file tree
Hide file tree
Showing 2 changed files with 24 additions and 2 deletions.
4 changes: 2 additions & 2 deletions src/refiners/foundationals/latent_diffusion/auto_encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -415,8 +415,8 @@ def _generate_latent_tiles(size: _ImageSize, tile_size: _ImageSize, overlap: int
"""
tiles: list[_Tile] = []

for x in range(0, size.width, tile_size.width - overlap):
for y in range(0, size.height, tile_size.height - overlap):
for x in range(0, max(size.width - overlap, 1), tile_size.width - overlap):
for y in range(0, max(size.height - overlap, 1), tile_size.height - overlap):
tile = _Tile(
top=max(0, y),
left=max(0, x),
Expand Down
22 changes: 22 additions & 0 deletions tests/foundationals/latent_diffusion/test_autoencoders.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,28 @@ def test_tiled_autoencoder_rectangular_image(autoencoder: LatentDiffusionAutoenc
ensure_similar_images(sample_image, result, min_psnr=37, min_ssim=0.985)


@no_grad()
@pytest.mark.parametrize("img_width", [960, 968, 976, 1016, 1024, 1032])
def test_tiled_autoencoder_pathologic_sizes(
refiners_sd15_autoencoder: SD1Autoencoder,
sample_image: Image.Image,
test_device: torch.device,
img_width: int,
):
# 968 is the pathologic case, just larger than (tile size - overlap): (128 - 8 + 1) * 8 = 968

autoencoder = refiners_sd15_autoencoder.to(device=test_device, dtype=torch.float32)

sample_image = sample_image.crop((0, 0, img_width // 4, 400))
sample_image = sample_image.resize((sample_image.width * 4, sample_image.height * 4))

with autoencoder.tiled_inference(sample_image, tile_size=(1024, 1024)):
encoded = autoencoder.tiled_image_to_latents(sample_image)
result = autoencoder.tiled_latents_to_image(encoded)

ensure_similar_images(sample_image, result, min_psnr=37, min_ssim=0.985)


def test_value_error_tile_encode_no_context(autoencoder: LatentDiffusionAutoencoder, sample_image: Image.Image) -> None:
with pytest.raises(ValueError):
autoencoder.tiled_image_to_latents(sample_image)
Expand Down

0 comments on commit 05a5959

Please sign in to comment.