Skip to content

Commit

Permalink
prevent setattr pytorch module to register on the Chain class
Browse files Browse the repository at this point in the history
  • Loading branch information
limiteinductive committed Oct 10, 2023
1 parent d02be0d commit 25da3b4
Show file tree
Hide file tree
Showing 4 changed files with 106 additions and 63 deletions.
8 changes: 8 additions & 0 deletions src/refiners/fluxion/layers/chain.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,14 @@ def __init__(self, *args: Module | Iterable[Module]) -> None:
if isinstance(module, ContextModule) and module.parent != self:
module._set_parent(self)

def __setattr__(self, name: str, value: Any) -> None:
if isinstance(value, torch.nn.Module):
raise ValueError(
"Chain does not support setting modules by attribute. Instead, use a mutation method like `append` or"
" wrap it within a single element list to prevent pytorch from registering it as a submodule."
)
super().__setattr__(name, value)

@property
def provider(self) -> ContextProvider:
return self._provider
Expand Down
13 changes: 8 additions & 5 deletions src/refiners/fluxion/layers/module.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from refiners.fluxion.utils import load_from_safetensors
from refiners.fluxion.context import Context, ContextProvider

from typing import Callable, TYPE_CHECKING, Sequence
from typing import TYPE_CHECKING, Sequence

if TYPE_CHECKING:
from refiners.fluxion.layers.chain import Chain
Expand All @@ -26,11 +26,14 @@ class Module(TorchModule):
_buffers: dict[str, Any]
_tag: str = ""

__getattr__: Callable[["Module", str], Any] # type: ignore
__setattr__: Callable[["Module", str, Any], None] # type: ignore

def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, *kwargs) # type: ignore
super().__init__(*args, *kwargs) # type: ignore[reportUnknownMemberType]

def __getattr__(self, name: str) -> Any:
return super().__getattr__(name=name)

def __setattr__(self, name: str, value: Any) -> None:
return super().__setattr__(name=name, value=value)

def load_from_safetensors(self, tensors_path: str | Path, strict: bool = True) -> "Module":
state_dict = load_from_safetensors(tensors_path)
Expand Down
139 changes: 81 additions & 58 deletions src/refiners/foundationals/clip/concepts.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,64 +10,6 @@
import re


class ConceptExtender(fl.Chain, Adapter[CLIPTextEncoder]):
"""
Extends the vocabulary of a CLIPTextEncoder with one or multiple new concepts, e.g. obtained via the Textual Inversion technique.
Example:
import torch
from refiners.foundationals.clip.concepts import ConceptExtender
from refiners.foundationals.clip.text_encoder import CLIPTextEncoderL
from refiners.fluxion.utils import load_from_safetensors
encoder = CLIPTextEncoderL(device="cuda")
tensors = load_from_safetensors("CLIPTextEncoderL.safetensors")
encoder.load_state_dict(tensors)
cat_embedding = torch.load("cat_embedding.bin")["<this-cat>"]
dog_embedding = torch.load("dog_embedding.bin")["<that-dog>"]
extender = ConceptExtender(encoder)
extender.add_concept(token="<this-cat>", embedding=cat_embedding)
extender.inject()
# New concepts can be added at any time
extender.add_concept(token="<that-dog>", embedding=dog_embedding)
# Now the encoder can be used with the new concepts
"""

def __init__(self, target: CLIPTextEncoder) -> None:
with self.setup_adapter(target):
super().__init__(target)

try:
token_encoder, self.token_encoder_parent = next(target.walk(TokenEncoder))
except StopIteration:
raise RuntimeError("TokenEncoder not found.")

try:
clip_tokenizer, self.clip_tokenizer_parent = next(target.walk(CLIPTokenizer))
except StopIteration:
raise RuntimeError("Tokenizer not found.")

self.embedding_extender = EmbeddingExtender(token_encoder)
self.token_extender = TokenExtender(clip_tokenizer)

def add_concept(self, token: str, embedding: Tensor) -> None:
self.embedding_extender.add_embedding(embedding)
self.token_extender.add_token(token, self.embedding_extender.num_embeddings - 1)

def inject(self: "ConceptExtender", parent: fl.Chain | None = None) -> "ConceptExtender":
self.embedding_extender.inject(self.token_encoder_parent)
self.token_extender.inject(self.clip_tokenizer_parent)
return super().inject(parent)

def eject(self) -> None:
self.embedding_extender.eject()
self.token_extender.eject()
super().eject()


class EmbeddingExtender(fl.Chain, Adapter[TokenEncoder]):
old_weight: Parameter
new_weight: Parameter
Expand Down Expand Up @@ -122,3 +64,84 @@ def add_token(self, token: str, token_id: int) -> None:
tokenizer.token_pattern = re.compile(new_pattern, re.IGNORECASE)
# Define the keyword as its own smallest subtoken
tokenizer.byte_pair_encoding_cache[token] = token


class ConceptExtender(fl.Chain, Adapter[CLIPTextEncoder]):
"""
Extends the vocabulary of a CLIPTextEncoder with one or multiple new concepts, e.g. obtained via the Textual Inversion technique.
Example:
import torch
from refiners.foundationals.clip.concepts import ConceptExtender
from refiners.foundationals.clip.text_encoder import CLIPTextEncoderL
from refiners.fluxion.utils import load_from_safetensors
encoder = CLIPTextEncoderL(device="cuda")
tensors = load_from_safetensors("CLIPTextEncoderL.safetensors")
encoder.load_state_dict(tensors)
cat_embedding = torch.load("cat_embedding.bin")["<this-cat>"]
dog_embedding = torch.load("dog_embedding.bin")["<that-dog>"]
extender = ConceptExtender(encoder)
extender.add_concept(token="<this-cat>", embedding=cat_embedding)
extender.inject()
# New concepts can be added at any time
extender.add_concept(token="<that-dog>", embedding=dog_embedding)
# Now the encoder can be used with the new concepts
"""

def __init__(self, target: CLIPTextEncoder) -> None:
with self.setup_adapter(target):
super().__init__(target)

try:
token_encoder, token_encoder_parent = next(target.walk(TokenEncoder))
self._token_encoder_parent = [token_encoder_parent]

except StopIteration:
raise RuntimeError("TokenEncoder not found.")

try:
clip_tokenizer, clip_tokenizer_parent = next(target.walk(CLIPTokenizer))
self._clip_tokenizer_parent = [clip_tokenizer_parent]
except StopIteration:
raise RuntimeError("Tokenizer not found.")

self._embedding_extender = [EmbeddingExtender(token_encoder)]
self._token_extender = [TokenExtender(clip_tokenizer)]

@property
def embedding_extender(self) -> EmbeddingExtender:
assert len(self._embedding_extender) == 1, "EmbeddingExtender not found."
return self._embedding_extender[0]

@property
def token_extender(self) -> TokenExtender:
assert len(self._token_extender) == 1, "TokenExtender not found."
return self._token_extender[0]

@property
def token_encoder_parent(self) -> fl.Chain:
assert len(self._token_encoder_parent) == 1, "TokenEncoder parent not found."
return self._token_encoder_parent[0]

@property
def clip_tokenizer_parent(self) -> fl.Chain:
assert len(self._clip_tokenizer_parent) == 1, "Tokenizer parent not found."
return self._clip_tokenizer_parent[0]

def add_concept(self, token: str, embedding: Tensor) -> None:
self.embedding_extender.add_embedding(embedding)
self.token_extender.add_token(token, self.embedding_extender.num_embeddings - 1)

def inject(self: "ConceptExtender", parent: fl.Chain | None = None) -> "ConceptExtender":
self.embedding_extender.inject(self.token_encoder_parent)
self.token_extender.inject(self.clip_tokenizer_parent)
return super().inject(parent)

def eject(self) -> None:
self.embedding_extender.eject()
self.token_extender.eject()
super().eject()
9 changes: 9 additions & 0 deletions tests/fluxion/layers/test_chain.py
Original file line number Diff line number Diff line change
Expand Up @@ -217,3 +217,12 @@ def test_chain_structural_copy() -> None:
y2 = m2(x)
assert y2.shape == (7, 12)
torch.equal(y2, y)


def test_setattr_dont_register() -> None:
chain = fl.Chain(fl.Linear(in_features=1, out_features=1), fl.Linear(in_features=1, out_features=1))

with pytest.raises(expected_exception=ValueError):
chain.foo = fl.Linear(in_features=1, out_features=1)

assert module_keys(chain=chain) == ["Linear_1", "Linear_2"]

0 comments on commit 25da3b4

Please sign in to comment.