-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2b82b69
commit d8616e8
Showing
2 changed files
with
257 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
--- | ||
slug: 7月7日内容汇总 | ||
title: 7月7日内容汇总 | ||
authors: [garfield] | ||
tags: [] | ||
--- | ||
|
||
![alt text](maxresdefault.jpg) | ||
|
||
封面图:Safe by construction - Roberto Clapis | ||
|
||
## 🌟 AI 相关 | ||
|
||
:::tip 技术资讯 | ||
|
||
- [Reflection as a Service 🪞](https://twitter.com/llama_index/status/1808898730638389262) | ||
- [昨天上海 AI lab 开源了一个非常强的多模态 LLM InternLM-XComposer-2.5](https://twitter.com/op7418/status/1809059959264719115) | ||
- [从 Prompt Engineering 到 Flow Engineering🔥 @CodiumAI 开源了一个 PR-Agent,目前 4.8K Star 🌟,自动基于你提交的代码进行分析,给于评论反馈与意见,生成 PR 描述!](https://twitter.com/tuturetom/status/1809053337825989009) | ||
- [Nice overview kind of Paper - "Searching for Best Practices in Retrieval-Augmented Generation"](https://twitter.com/rohanpaul_ai/status/1809032437814439973) | ||
- [麻省理工这本《深入理解深度学习》的免费书可太好了。深入讲解了深度学习的大部分概念。而且每个章节都有搭配的PPT可以下载,还有对应练习的Python代码。内容包括监督学习、神经网络、损失函数、正则化、卷积网络、Transformers、扩散模型、强化学习等。](https://twitter.com/omarsar0/status/1808887392503279758) | ||
- [🏆如何实现财务自由的21条准则:顶级商学院课件 深入浅出 初学专业兼具底层思维分享](https://twitter.com/indigo11/status/1808786759914041537) | ||
- [非常值得一看的视频,OpenAI 联合创始人 Andrej Karpathy 在2024年加州大学伯克利分校人工智能黑客马拉松颁奖典礼上的主题演讲](https://twitter.com/dotey/status/1808731046751375748) | ||
- [大模型产品化第一年:战术、运营与战略](https://twitter.com/9hills/status/1808003554353074245) | ||
- [What We Learned from a Year of Building with LLMs (Part I)](https://www.oreilly.com/radar/what-we-learned-from-a-year-of-building-with-llms-part-i/) | ||
- [支持 10+ 翻译器的漫画或图片翻译神器 - Image/Manga Translator 开源!🔥目前 4 6K Star](https://twitter.com/tuturetom/status/1808549893822370297) | ||
- [Reddit 上的这个 lectures 频道,包含很多值得一听的视频讲座、演讲和有趣的公开演讲,包括数学、物理、计算机科学、编程、工程、生物、医学、经济学、政治、社会科学这类学科的知识](https://twitter.com/HiTw93/status/1808649423037067750) | ||
- [转译:《如何使用ChatGPT撰写科学研究论文?- Dr Asma Jabeen》](https://twitter.com/dotey/status/1808221582793626012) | ||
- [刚才翻 MySQL 文档,切文档版本的时候,发现 MySQL 9.0 发布了](https://twitter.com/cn_LittleYu/status/1808399143557386555) | ||
- [GraphRAG, a graph-based approach to retrieval-augmented generation (RAG) that significantly improves question-answering over private or previously unseen datasets, is now available on GitHub](https://twitter.com/MSFTResearch/status/1808168761565798833) | ||
- [GraphRAG: New tool for complex data discovery now on GitHub](https://www.microsoft.com/en-us/research/blog/graphrag-new-tool-for-complex-data-discovery-now-on-github/) | ||
- [下一代 RAG 技术来了!微软正式开源 GraphRAG🔥 通过 LLM 构建知识图谱结合图机器学习,极大增强 LLM 在处理私有数据时的性能,同时 GraphRAG 具备连点成线的跨大型数据集的复杂语义问题推理能力](https://twitter.com/tuturetom/status/1808320407583576163) | ||
- [How to Fine-tune a Large Language Model](https://blog.monsterapi.ai/blogs/finetuning-a-large-language-model/) | ||
- [Gemma 2: Improving Open Language Models at a Practical Size](https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf) | ||
- [ncnn Vulkan 机器学习最新进展](https://www.bilibili.com/video/BV1Qy411z7uh) | ||
- [The Future of Knowledge Assistants 🤖](https://twitter.com/llama_index/status/1808164468708499482) | ||
- [Cool repo from @huggingface - local-gemma: Gemma 2 optimized for your local machine 🔥](https://twitter.com/rohanpaul_ai/status/1808082423181115735) | ||
- [Claude 3.5 的 Artifacts 确实非常惊艳,在跟他讨论问题时,他不但耐心地给你仔细分析优缺点,还随手抓过一张纸开始画流程图,边画边说。。。](https://twitter.com/AxtonLiu/status/1808261617718907267) | ||
- [RAG 最佳实践探索](https://twitter.com/shao__meng/status/1808038130123198744) | ||
- [A recent Q* Paper - On MATH, surpasses GPT-4 and Gemini Ultra. 🔥](https://twitter.com/rohanpaul_ai/status/1807561583079367086) | ||
- [假如你想看 AI 相关的最新消息,可以关注这个推特 AI 列表 「AI Leaders」,时效性会快于国内翻译搬运的好几天,甚至可以置顶到列表项方便阅读](https://twitter.com/i/lists/1278784207641284609) | ||
- [一个基于LangChain 实现RAG(检索增强型生成)的指南!](https://twitter.com/aigclink/status/1807977557968708010) | ||
- [60 AI Tools to Start Your Profitable Online Business in 2024](https://twitter.com/eyishazyer/status/1807732216484536399) | ||
- Mooncake 是 Moonshot AI 提供的领先的 LLM 服务 Kimi 的服务平台,目前已经在知乎发表 3 偏技术报告: | ||
- [Mooncake (1): 在月之暗面做月饼,Kimi 以 KVCache 为中心的分离式推理架构](https://zhuanlan.zhihu.com/p/705754254) | ||
- [关于 Mooncake 的碎碎念](https://zhuanlan.zhihu.com/p/705910725) | ||
- [Mooncake (2):Kimi “泼天的流量”怎么接,分离架构下基于预测的调度策略](https://zhuanlan.zhihu.com/p/706204757) | ||
- Mooncake 技术报告中提出 3 个论点: | ||
- 存算分离的 KVCache 策略是长期趋势(立马就可以省钱 | ||
- 与 MLA、KVCache 压缩方案正交,KVCache 变小意味着 Mooncake 方案收益明显 | ||
- 为芯片设计提供参考,未来 2~3 年可能会是趋势 | ||
- 中文解读版本:[月之暗面kimi底层推理系统方案揭秘](https://mp.weixin.qq.com/s/MgJ01ZcQ922BX0-UHGdRKg) | ||
- [为 RAG 场景微调嵌入模型](https://twitter.com/shao__meng/status/1807735962296090849) | ||
- [Fantastic paper for Reward Model Training in RLHF ✨](https://twitter.com/rohanpaul_ai/status/1807828746625507758) | ||
- [Multi-agents on k8s 🤖](https://twitter.com/jerryjliu0/status/1807935920882266231) | ||
- [置身事内 - 中国政府与经济发展](https://twitter.com/HiTw93/status/1807325505240383677) | ||
- [Brilliant new paper, HUGE for LLM's internalized knowledge 🔥](https://twitter.com/rohanpaul_ai/status/1807774433550950816) | ||
- [A very intriguing recent paper "Nested Jailbreak Prompts can Fool LLMs Easily" - reveals the inadequacy of current defense methods in safeguarding LLMs.](https://twitter.com/rohanpaul_ai/status/1807202397548134760) | ||
- [专为 LLM 打造的智能缓存技术 - GPTCache 开源并发布论文,目前 6.7K Star 🌟](https://twitter.com/tuturetom/status/1807446334175428629) | ||
- [用 DALL-E 给文章配图我是这么用的](https://twitter.com/dotey/status/1807147430460244446) | ||
- [支持爬取网页、解析音视频/PDF 等 10+ 格式文件🔥,LlamaIndex LlamaParse 开源平替,超强的 AI 数据源解析器 - OmniParse 开源,目前 457 Star 🌟!](https://twitter.com/tuturetom/status/1807643529805738355) | ||
- [原来微软的这套《Generative AI for Beginners》还有中文版。内容不深,作为入门教程快速通读一遍还是可以的](https://twitter.com/interjc/status/1807608783755169921) | ||
- [💻 Gemini 推出代码解析器:Code execution](https://twitter.com/eviljer/status/1807297926894678315) | ||
- [This 76-page paper on Prompting Techniques has become quite popular. A nice read for your weekend](https://twitter.com/rohanpaul_ai/status/1807141330411487553) | ||
|
||
::: | ||
|
||
[LLM+本地知识库?简单又没那么简单](https://juejin.cn/post/7300470358817243145) | ||
|
||
[2024年6月后2周重要的大语言模型论文总结:LLM进展、微调、推理和对齐](https://mp.weixin.qq.com/s/Q9rJ5eWnaMRYyAtA2C_ZTA) | ||
|
||
[RouteLLM:高效LLM路由框架,可以动态选择优化成本与响应质量的平衡](https://mp.weixin.qq.com/s/YTe-G8jlmf7DfvNr1jXmiQ) | ||
|
||
[2分钟,需求文档变产品,国产大模型开发神器火爆WAIC](https://mp.weixin.qq.com/s/XDuIFyCwMW67HBuPHQqKKg) | ||
|
||
[RAGFlow开源Star量破万,是时候思考下RAG的未来是什么了](https://mp.weixin.qq.com/s/wk3nlPU0rKAcHCiELUCr1A) | ||
|
||
[详解这一年多模态视觉-语言大模型的架构演进](https://mp.weixin.qq.com/s/nKGk4rzJqWwilWgPOg74Hw) | ||
|
||
[社区供稿 | 加速基于 Arm Neoverse N2 的大语言模型推理](https://mp.weixin.qq.com/s/t5ETfG_H9oi1G3XMcyfHMw) | ||
|
||
[Kimi论文自曝推理架构,80%流量都靠它承担](https://mp.weixin.qq.com/s/u9RG7zuDUO62CbrmGyZtOA) | ||
|
||
[LLaMA Factory:从预训练到RLHF,大模型高效训练框架](https://mp.weixin.qq.com/s/Ut_a35mnFcf-noh_28ISMQ) | ||
|
||
[大语言模型超参数入门调参手册](https://mp.weixin.qq.com/s/Nh_NmOSGdx5nOIr8Y_ysIA) | ||
|
||
[图解大模型计算加速系列:分离式推理架构1,从DistServe谈起](https://mp.weixin.qq.com/s/swrU7CfPLcksrf5mYL_LXA) | ||
|
||
[关键点检测标注文件解析(姿态估计)——COCO数据集](https://mp.weixin.qq.com/s/_2yhRu4XjcTCepC4JvA47A) | ||
|
||
[可控细节的长文档摘要,探索开源LLM工具与实践](https://mp.weixin.qq.com/s/UaAbSZRqITdgkFE-ACvJQQ) | ||
|
||
[GPT-4预测股票涨跌更更更准了!东京大学新框架LLMFactor提升显著 | ACL 2024](https://mp.weixin.qq.com/s/n54ejG_c-BZs1apeEe1pDw) | ||
|
||
[使用‘消除’技术绕过LLM的安全机制,不用训练就可以创建自己的nsfw模型](https://mp.weixin.qq.com/s/NMo3gLZPskH766vxoYJipg) | ||
|
||
[SOFTS: 时间序列预测的最新模型以及Python使用示例](https://mp.weixin.qq.com/s/Xeu9XQhvz3wubK6d7Sd7qQ) | ||
|
||
[Claude 3.5 Sonnet 超越 GPT-4o成为最智能的模型,新功能artifacts可以实时查看和迭代生成的代码](https://mp.weixin.qq.com/s/69Hy2M_a9lVuIumFDFoXjA) | ||
|
||
[Llama也能做图像生成!港大字节推出开源自回归文生图模型,在线体验已开放](https://mp.weixin.qq.com/s/vK2mPxWUooVqUb8H4YnRrA) | ||
|
||
[240万亿巨量数据被洗出,足够训出18个GPT-4!全球23所机构联手,清洗秘籍公开](https://mp.weixin.qq.com/s/26HAPNf8AAScPPE9OEA6zQ) | ||
|
||
[2024 SOTA多模态大模型架构设计的最佳实践](https://mp.weixin.qq.com/s/6t-QJoy8q87dlpcsCc1vFQ) | ||
|
||
[人类偏好对齐训练技术解析](https://mp.weixin.qq.com/s/Zo274CCITKGRn0dKD8WNJA) | ||
|
||
[ICML 2024 Spotlight | 在解码中重新对齐,让语言模型更少幻觉、更符合人类偏好](https://mp.weixin.qq.com/s/-9MjgNOLRrUdaQUF5tVv9w) | ||
|
||
[Web2Code:一款用于网页转代码的全套数据集(含训练数据和评估框架),得分显著提升](https://mp.weixin.qq.com/s/Wo0cky9k6x_kAG4xXTNFvQ) | ||
|
||
[AIOps的工业化应用:有 42%的机会让Meta在发现故障后几分钟内就定位到潜在的根本原因](https://mp.weixin.qq.com/s/AunfS2qA8n0_d0rdN1NMJA) | ||
|
||
[大模型国产化适配10-快速迁移大模型到昇腾910B保姆级教程(Pytorch版)](https://mp.weixin.qq.com/s/PSnTouVkP6Gl7Rc5-yvClQ) | ||
|
||
[详解这一年多模态视觉-语言大模型的架构演进](https://mp.weixin.qq.com/s/Nh5vlWno2siU4kGog3crdw) | ||
|
||
🌟 [月之暗面kimi底层推理系统方案揭秘](https://mp.weixin.qq.com/s/MgJ01ZcQ922BX0-UHGdRKg) | ||
|
||
[使用CXX进行Rust和C++的安全互操作](https://mp.weixin.qq.com/s/PRVQwMjWw_mQ7v58UeFuEg) | ||
|
||
[Florence-2,小模型推进视觉任务的统一表征](https://mp.weixin.qq.com/s/5LryZXmLLurDa-XEAdLOGg) | ||
|
||
[ICML 2024 | 无需LayerNorm简化Attention,精度无损推理效率大幅提升](https://mp.weixin.qq.com/s/AfRwiXv-5zIM33IcIa7Kfw) | ||
|
||
[拆分Transformer注意力,韩国团队让大模型解码提速20倍](https://mp.weixin.qq.com/s/JE0w-ksh5TRby_TRfjWbzw) | ||
|
||
[模型实操 | 从零开始,用英伟达T4、A10训练小型文生视频模型](https://mp.weixin.qq.com/s/uxoxE2SjOhEDTwiVGu_zpg) | ||
|
||
[BigCodeBench: 继 HumanEval 之后的新一代代码生成测试基准](https://mp.weixin.qq.com/s/RMNwgrXfwHFcg7wg4m4Mvw) | ||
|
||
[打败GPT4!仅用1/24成本的混合智能体架构逆袭 (mixture of agents)](https://mp.weixin.qq.com/s/6hmEMT7XJlOgHmItx8tV_w) | ||
|
||
[Meta:悄悄发布多款模型、研究和数据集](https://mp.weixin.qq.com/s/iZghbBw6SF3lHKucOS884w) | ||
|
||
[llama-index团队开源面向生产级多智能体系统的开源框架:llama-agent](https://mp.weixin.qq.com/s/pvhncazfvw47kaE4z2MmCA) | ||
|
||
[提示工程策略:利用【慢思考】的双过程理论减少模型有害输出](https://mp.weixin.qq.com/s/hBhvAn5MiUuaB9rmwwmNlA) | ||
|
||
[从零开始,用英伟达T4、A10训练小型文生视频模型,几小时搞定](https://mp.weixin.qq.com/s/fXUH7GESEXjplLStti2C2g) | ||
|
||
[ICML2024 & 北大|探究Transformer如何进行推理?基于样例还是基于规则](https://mp.weixin.qq.com/s/I0cQdS7dPyiujh7FZKp02w) | ||
|
||
[LLM Agent的规划能力如何重塑AI的未来](https://mp.weixin.qq.com/s/7dPr0B4-Pb8q9_ouaoM8Cg) | ||
|
||
[kimi chat大模型的200万长度无损上下文可能是如何做到的](https://mp.weixin.qq.com/s/ow7n7W2Or9VmmtxRxaj9Hg) | ||
|
||
[大模型推理优化技术-KV Cache](https://mp.weixin.qq.com/s/leRUUUTHRyH8nApUVJGmCg) | ||
|
||
## ⭐️ Go & 云原生 & Rust 相关 | ||
|
||
:::tip 技术资讯 | ||
|
||
- [sans-IO 高性能网络服务实现:Firezone公司用Rust实现了他们网络服务中的一个关键组件,并总结了一套关于高性能安全开发网络服务的心得。并实现在了 sans-IO 中](https://www.firezone.dev/blog/sans-io) | ||
- [使用 WASM 和 Rust 从零实现 React v18:这是一个系列文章的第 16 部分,介绍如何从零开始使用 WASM 和 Rust 实现 React v18 的核心功能](https://dev.to/paradeto/implement-react-v18-from-scratch-using-wasm-and-rust-16-implement-react-noop-38a8) | ||
- [htmd: HTML to Markdown for Rust](https://github.com/letmutex/htmd) | ||
- [ezpkg.io - Collection of packages to make writing Go code easier](https://dev.to/olvrng/ezpkgio-collection-of-packages-to-make-writing-go-code-easier-2fid) | ||
- [How to Implement Two-Factor #Authentication (2FA) in #Golang](https://twitter.com/GolangTrends/status/1807933708285919382) | ||
|
||
::: | ||
|
||
[Golang 开发不能错过的优质的开源项目](https://juejin.cn/post/7380222254195638284) | ||
|
||
[从 Docker Hub 拉取镜像受阻?这些解决方案帮你轻松应对](https://juejin.cn/post/7382775817581051904) | ||
|
||
🌟 [从零开始:使用 pyo3-arrow 打造高效的 Python-Rust 数据桥梁](https://mp.weixin.qq.com/s/yaJnbGZDSKPn-bd5uusu2g) | ||
|
||
[Go 的 iota 并非枚举](https://mp.weixin.qq.com/s/N_MIkcINvqxuuYmRArT9uQ) | ||
|
||
[Go语言助力安全测试:24小时内发送5亿次HTTP/1.1请求](https://mp.weixin.qq.com/s/xL1PN0R02qT1-4-xizwxRA) | ||
|
||
[使用 Go 提供的 Cookie 库简化 Cookie 操作](https://mp.weixin.qq.com/s/830wxM4ECYm-vAjYyeEzJw) | ||
|
||
[在 Rust 中轻松转换 HTML 到 Markdown](https://mp.weixin.qq.com/s/ULlA9zi62-HS04M-mRcKOQ) | ||
|
||
[Golang 编写范型集合,官方文档未提及的诀窍](https://mp.weixin.qq.com/s/_EczFx3SYYi_Q11udm_hsQ) | ||
|
||
[以 Go 语言为例解释什么是伪共享以及如何解决](https://mp.weixin.qq.com/s/cIWs8JQybOps64cws_uySg) | ||
|
||
[\[Go Official\]Go 1.22 升级后的更加鲁棒的切片操作](https://mp.weixin.qq.com/s/tGOb4BFCvkl64rK9bzv-IQ) | ||
|
||
[Go 1.23中的自定义迭代器与iter包](https://mp.weixin.qq.com/s/IB-EQEcOQcUIqosz0RMveg) | ||
|
||
[Go必知必会:解锁 Go 语言函数的玩法](https://mp.weixin.qq.com/s/icGvEVrjnRGopzZ130Co3A) | ||
|
||
[如何架构优秀的Go后端REST API服务](https://mp.weixin.qq.com/s/BFx3G1wrghbqBc8sl-Bdpw) | ||
|
||
[Go 1.22.5 修复 net/http 包中由于不正确的 100-continue 处理而拒绝服务的安全问题](https://mp.weixin.qq.com/s/Cm73sI2cq7Id2TeZFbFIsA) | ||
|
||
[在 Go 中如何检查结构体是否为空](https://mp.weixin.qq.com/s/6KqG53y_9QwFCKAFe66D4w) | ||
|
||
🌟 [gaby:基于大模型的GitHub助手亮相Go项目](https://mp.weixin.qq.com/s/8kWCH_X6-OVigM67WApCzQ) | ||
|
||
[Golang 对接并部署 helm charts](https://mp.weixin.qq.com/s/FkU_48cG_ws8b7WNd_Cc2Q) | ||
|
||
[Go 使用 interface 时的 7 个常见错误](https://mp.weixin.qq.com/s/C4qDhKIe5-4uZx09vrSmiA) | ||
|
||
[Docker镜像拉取最优解!养一只小猫,利用crproxy高速无感镜像拉取](https://mp.weixin.qq.com/s/uL3p9_5wCBMUJv8s7RpBAw) | ||
|
||
[qsv:Rust实现一个处理CSV文件的简单,快速和可组合的命令行工具](https://mp.weixin.qq.com/s/wHjOxZFz0I3F1_a43-zGoQ) | ||
|
||
[如何设计一个分布式数据实时同步系统](https://mp.weixin.qq.com/s/vR15Z_beG-7T3fgtHeessA) | ||
|
||
## 📒 后端相关 | ||
|
||
[告别面条代码,让代码一开始就简洁](https://juejin.cn/post/7379960023407804428) | ||
|
||
[不是,你还在随便设计数据库字段类型和长度](https://juejin.cn/post/7350936959060541480) | ||
|
||
[秒杀圣经:10Wqps高并发秒杀,16大架构杀招,帮你秒变架构师](https://mp.weixin.qq.com/s/_xFqDks7tVoGCjh42XE7vA) | ||
|
||
[从一个服务预热不生效问题谈微服务无损上线](https://mp.weixin.qq.com/s/LBcOfwO6ScOd2HNUfver8g) | ||
|
||
[Spring Cloud + Nacos + 负载均衡器实现全链路灰度发布实战](https://mp.weixin.qq.com/s/SBlNFsZzl5haHsZugdudSg) | ||
|
||
[Navicat 竟然免费了?可惜我有更好用的。。](https://mp.weixin.qq.com/s/iYa41K9jITQV3ikoO-Ka3w) | ||
|
||
🌟 [MySQL日志15连问,你能抗住嘛](https://mp.weixin.qq.com/s/YBLcpIEmi-yyiTWtBqBSJA) | ||
|
||
[【收藏】MySQL 超全优化清单(可执行系列)](https://mp.weixin.qq.com/s/1Evn8Sl_FwWce0uMcVFs0g) | ||
|
||
[电商后端开发,COLA 状态机在订单系统中的实战](https://mp.weixin.qq.com/s/e77LVBMXzILs74o4HO2mrQ) | ||
|
||
[熔断、隔离、重试、降级、超时、限流,一文帮你顺理高可用架构流量治理](https://mp.weixin.qq.com/s/jh8KrwtCx-4kvqczgYzoLA) | ||
|
||
[架构之道:人人都是架构师](https://mp.weixin.qq.com/s/_sPs0NB4zWef-pW17DKimg) | ||
|
||
🌟 [11个高可用设计实战技巧,轻松应对大厂面试](https://mp.weixin.qq.com/s/mjiu3J7rscTpX_BewLyqkg) | ||
|
||
🌟 [订单支付超时如何处理?盘点延迟任务的11种实现方式,你知道几种](https://mp.weixin.qq.com/s/tcpmpt7jiYbsz-FslKElMw) | ||
|
||
🌟 [DuckDB 纯 SQL 实现混合搜索:精准与语义兼得](https://mp.weixin.qq.com/s/gSMUzIGCe8Vxlc5NPzMSbw) | ||
|
||
[DuckDB实战:单机2.5小时处理450GB投票数据](https://mp.weixin.qq.com/s/z-_ixPeksB_PjFMNL7NA8Q) | ||
|
||
[使用懒加载 + 零拷贝后,程序的秒开率提升至99.99%](https://mp.weixin.qq.com/s/vif0SAvqz-PpBlhViYCFhA) | ||
|
||
[elasticSearch 是什么?工作原理是怎么样的](https://mp.weixin.qq.com/s/ZqUa-weWXBTUPLhZ-UeHVQ) | ||
|
||
## 📒 前端相关 | ||
|
||
[React 19 新 hook —— useActionState 与 Next.js Server Actions 绝佳搭配](https://mp.weixin.qq.com/s/LEfevL6O70RyBbLhG1ScoA) | ||
|
||
[实现一个支持@的输入框](https://mp.weixin.qq.com/s/vlYiMpPiWD4yo-5s0N9dPA) | ||
|
||
[前端工程化系列一:序言](https://mp.weixin.qq.com/s/NuH-sga13okeMVGDFZWFtQ) | ||
|
||
[前端项目路径别名终极解决方案](https://mp.weixin.qq.com/s/E6GTSOJd2LY5NdeBQqIdzw) | ||
|
||
[老板:给你20天,写一个可拖拽动态表单生成器](https://mp.weixin.qq.com/s/AOsLfzUXevvQhgeLiJhbiA) | ||
|
||
[Chrome 127 内置 AI Gemini 大模型,JS 可直接调用!](https://mp.weixin.qq.com/s/fbrsqWwqIQeckGLoRbx4uA) | ||
|
||
[周百万下载量的 NPM 包可执行任意 JS 代码,数十万网站可能受影响!](https://mp.weixin.qq.com/s/_uG0JRkNI01L3H9x25envw) | ||
|
||
[前端可以玩“锁”了](https://mp.weixin.qq.com/s/O0YwzJ5AYTn7gvizN4cjag) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.