Skip to content

StreamFlake: Real-Time CDC Pipeline with Kafka and Snowflake

Notifications You must be signed in to change notification settings

gillsantos/streamflake

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

StreamFlake: Real-Time CDC Pipeline with Kafka and Snowflake

Building a Real-Time CDC Pipeline with Kafka and Snowflake

This document outlines a three-part series on building a real-time CDC (Change Data Capture) pipeline using Kafka and Debezium to stream changes from a Postgres database to a Snowflake lake house.

Architecture

cdc-postgres-kafka-kubernetes-snowflake

Part 1: Installing and Deploying Confluent Kafka on Kubernetes

Requirements

  • Kubectl and Minikube with 2 CPUs and 4GB memory
  • Linux Ubuntu 22.04 (or similar)
  • Kubectl v1.29.3 (or later)
  • Minikube v1.32.0 (or later)

Section 1: Installing kubectl

Download and install kubectl for your operating system:

https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

  1. Download kubectl:
curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
  1. Install kubectl:
sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl
  1. Check kubectl version:
kubectl version --client --output=yaml

Section 2: Installing Minikube

Install and start Minikube:

https://minikube.sigs.k8s.io/docs/start/

  1. Download Minikube:
curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64
  1. Install Minikube:
sudo install minikube-linux-amd64 /usr/local/bin/minikube && rm minikube-linux-amd64
  1. Check Minikube version:
minikube version
  1. Start Minikube:
minikube start

For a development/local environment with minimal CPU/memory configuration:

minikube start --cpus 2 --memory 4096

Section 3: Deploying Confluent Kafka

Deploy Confluent Kafka on Kubernetes using the provided Helm chart:

https://github.com/confluentinc/confluent-kubernetes-examples

  1. Create a Confluent namespace:
kubectl create namespace confluent
  1. Set Confluent as your current context:
kubectl config get-contexts
kubectl config set-context --current --namespace confluent
  1. Set up the Helm Chart:
helm repo add confluentinc https://packages.confluent.io/helm
  1. Install Confluent Operator for Kubernetes using Helm:
helm upgrade --install confluent-operator confluentinc/confluent-for-kubernetes --namespace confluent
  1. Deploy Confluent Platform with the provided configuration:
kubectl apply -f ./helm/confluent-platform.yaml

For a development/local environment with minimal configuration:

kubectl apply -f ./helm/confluent-platform-dev.yaml
  1. Check that the Confluent For Kubernetes pod comes up and is running:
kubectl get pods
  1. Check that all Confluent Platform resources are deployed:
kubectl get confluent
  1. Access the Control Center on your web browser:
  • Get Kubernetes IP:
minikube ip
  • Get exposed port:
kubectl describe service -n confluent | grep -i nodeport
  • Access Control Center on ip:port

Alternatively, forward desired pod ports to your local machine:

kubectl port-forward schemaregistry-0 8081:8081
kubectl port-forward controlcenter-0 9021:9021
kubectl port-forward connect-0 8083:8083

Troubleshooting

  • Use kubectl get po -n confluent to check pods.
  • Use kubectl describe pod connect-0 for pod-specific information.
  • Use kubectl logs connect-0 | grep -i error to view error messages.

Cleanup

  • Delete Kubernetes resources:
kubectl delete -f ./helm/confluent-platform.yaml
  • Alternatively, for the development/local environment:
kubectl delete -f ./helm/confluent-platform-dev.yaml
  • Check if ports are being forwarded:
ps -aux | grep kubectl
  • Kill process:
pkill kubectl
  • Uninstall Confluent Operator:
helm uninstall confluent-operator
  • Stop Minikube (if necessary):
minikube stop
  • Delete Minikube (WARNING: this will destroy everything deployed):
minikube delete

To be continued...

This is the first of a three-part article. Stay tuned for what's next!