Skip to content

Commit

Permalink
Merge pull request #167 from gridap/autodiff
Browse files Browse the repository at this point in the history
Autodiff
  • Loading branch information
JordiManyer authored Nov 11, 2024
2 parents 5e7c471 + 8829dde commit 3943538
Show file tree
Hide file tree
Showing 9 changed files with 182 additions and 8 deletions.
6 changes: 6 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,12 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [Unreleased]

### Added

- Added support for automatic differentiation with ForwardDiff. Since PR[#167](https://github.com/gridap/GridapDistributed.jl/pull/167).

## [0.4.5] 2024-10-08

### Fixed
Expand Down
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ version = "0.4.5"
[deps]
BlockArrays = "8e7c35d0-a365-5155-bbbb-fb81a777f24e"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
Gridap = "56d4f2e9-7ea1-5844-9cf6-b9c51ca7ce8e"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195"
Expand All @@ -17,6 +18,7 @@ WriteVTK = "64499a7a-5c06-52f2-abe2-ccb03c286192"
[compat]
BlockArrays = "1"
FillArrays = "1"
ForwardDiff = "0.10"
Gridap = "0.18.7"
LinearAlgebra = "1"
MPI = "0.16, 0.17, 0.18, 0.19, 0.20"
Expand Down
105 changes: 105 additions & 0 deletions src/Autodiff.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@

function Fields.gradient(f::Function,uh::DistributedCellField)
fuh = f(uh)
FESpaces._gradient(f,uh,fuh)
end

function FESpaces._gradient(f,uh,fuh::DistributedDomainContribution)
local_terms = map(r -> DomainContribution(), get_parts(fuh))
local_domains = tuple_of_arrays(map(Tupleget_domains,local_views(fuh)))
for local_trians in local_domains
g = FESpaces._change_argument(gradient,f,local_trians,uh)
cell_u = map(get_cell_dof_values,local_views(uh))
cell_id = map(FESpaces._compute_cell_ids,local_views(uh),local_trians)
cell_grad = distributed_autodiff_array_gradient(g,cell_u,cell_id)
map(add_contribution!,local_terms,local_trians,cell_grad)
end
DistributedDomainContribution(local_terms)
end

function Fields.jacobian(f::Function,uh::DistributedCellField)
fuh = f(uh)
FESpaces._jacobian(f,uh,fuh)
end

function FESpaces._jacobian(f,uh,fuh::DistributedDomainContribution)
local_terms = map(r -> DomainContribution(), get_parts(fuh))
local_domains = tuple_of_arrays(map(Tupleget_domains,local_views(fuh)))
for local_trians in local_domains
g = FESpaces._change_argument(jacobian,f,local_trians,uh)
cell_u = map(get_cell_dof_values,local_views(uh))
cell_id = map(FESpaces._compute_cell_ids,local_views(uh),local_trians)
cell_grad = distributed_autodiff_array_jacobian(g,cell_u,cell_id)
map(add_contribution!,local_terms,local_trians,cell_grad)
end
DistributedDomainContribution(local_terms)
end

function FESpaces._change_argument(op,f,trian,uh::DistributedCellField)
spaces = map(get_fe_space,local_views(uh))
function g(cell_u)
cf = DistributedCellField(
map(CellField,spaces,cell_u),
get_triangulation(uh),
)
cell_grad = f(cf)
map(get_contribution,local_views(cell_grad),trian)
end
g
end

# autodiff_array_xxx

function distributed_autodiff_array_gradient(a,i_to_x)
dummy_forwarddiff_tag = ()->()
i_to_xdual = map(i_to_x) do i_to_x
lazy_map(DualizeMap(ForwardDiff.gradient,dummy_forwarddiff_tag),i_to_x)
end
i_to_ydual = a(i_to_xdual)
i_to_result = map(i_to_ydual,i_to_x) do i_to_ydual,i_to_x
i_to_cfg = lazy_map(ConfigMap(ForwardDiff.gradient,dummy_forwarddiff_tag),i_to_x)
lazy_map(AutoDiffMap(ForwardDiff.gradient),i_to_ydual,i_to_x,i_to_cfg)
end
return i_to_result
end

function distributed_autodiff_array_jacobian(a,i_to_x)
dummy_forwarddiff_tag = ()->()
i_to_xdual = map(i_to_x) do i_to_x
lazy_map(DualizeMap(ForwardDiff.jacobian,dummy_forwarddiff_tag),i_to_x)
end
i_to_ydual = a(i_to_xdual)
i_to_result = map(i_to_ydual,i_to_x) do i_to_ydual,i_to_x
i_to_cfg = lazy_map(ConfigMap(ForwardDiff.jacobian,dummy_forwarddiff_tag),i_to_x)
lazy_map(AutoDiffMap(ForwardDiff.jacobian),i_to_ydual,i_to_x,i_to_cfg)
end
i_to_result
end

function distributed_autodiff_array_gradient(a,i_to_x,j_to_i)
dummy_forwarddiff_tag = ()->()
i_to_xdual = map(i_to_x) do i_to_x
lazy_map(DualizeMap(ForwardDiff.gradient,dummy_forwarddiff_tag),i_to_x)
end
j_to_ydual = a(i_to_xdual)
j_to_result = map(i_to_x,j_to_i,j_to_ydual) do i_to_x,j_to_i,j_to_ydual
j_to_x = lazy_map(Reindex(i_to_x),j_to_i)
j_to_cfg = lazy_map(ConfigMap(ForwardDiff.gradient,dummy_forwarddiff_tag),j_to_x)
lazy_map(AutoDiffMap(ForwardDiff.gradient),j_to_ydual,j_to_x,j_to_cfg)
end
return j_to_result
end

function distributed_autodiff_array_jacobian(a,i_to_x,j_to_i)
dummy_forwarddiff_tag = ()->()
i_to_xdual = map(i_to_x) do i_to_x
lazy_map(DualizeMap(ForwardDiff.jacobian,dummy_forwarddiff_tag),i_to_x)
end
j_to_ydual = a(i_to_xdual)
j_to_result = map(i_to_x,j_to_i,j_to_ydual) do i_to_x,j_to_i,j_to_ydual
j_to_x = lazy_map(Reindex(i_to_x),j_to_i)
j_to_cfg = lazy_map(ConfigMap(ForwardDiff.jacobian,dummy_forwarddiff_tag),j_to_x)
lazy_map(AutoDiffMap(ForwardDiff.jacobian),j_to_ydual,j_to_x,j_to_cfg)
end
j_to_result
end
3 changes: 3 additions & 0 deletions src/GridapDistributed.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ using WriteVTK
using FillArrays
using BlockArrays
using LinearAlgebra
using ForwardDiff

import Gridap.TensorValues: inner, outer, double_contraction, symmetric_part
import LinearAlgebra: det, tr, cross, dot, , diag
Expand Down Expand Up @@ -62,4 +63,6 @@ include("ODEs.jl")

include("Adaptivity.jl")

include("Autodiff.jl")

end # module
45 changes: 45 additions & 0 deletions test/AutodiffTests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
module AutodiffTests

using Test
using Gridap, Gridap.Algebra
using GridapDistributed
using PartitionedArrays

function main(distribute,parts)
ranks = distribute(LinearIndices((prod(parts),)))

domain = (0,4,0,4)
cells = (4,4)
model = CartesianDiscreteModel(ranks,parts,domain,cells)

u((x,y)) = (x+y)^k
σ(∇u) = (1.0+∇u∇u)*∇u
(∇du,∇u) = (2*∇u∇du)*∇u + (1.0+∇u∇u)*∇du
f(x) = -divergence(y->σ((u,y)),x)

k = 1
reffe = ReferenceFE(lagrangian,Float64,k)
V = TestFESpace(model,reffe,dirichlet_tags="boundary")
U = TrialFESpace(u,V)

Ω = Triangulation(model)
= Measure(Ω,2*k)
r(u,v) = ( (v)(u)) - v*f )dΩ
j(u,du,v) = ( (v)(dσ((du),(u))) )dΩ

op = FEOperator(r,j,U,V)
op_AD = FEOperator(r,U,V)

uh = interpolate(1.0,U)
A = jacobian(op,uh)
A_AD = jacobian(op_AD,uh)
@test reduce(&,map(,partition(A),partition(A_AD)))

g(v) = (0.5*vv)dΩ
dg(v) = (uhv)dΩ
b = assemble_vector(dg,U)
b_AD = assemble_vector(gradient(g,uh),U)
@test b b_AD
end

end
18 changes: 10 additions & 8 deletions test/PLaplacianTests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,21 +8,20 @@ using Test
using SparseArrays

function main(distribute,parts)
main(distribute,parts,FullyAssembledRows(),SparseMatrixCSR{0,Float64,Int})
main(distribute,parts,SubAssembledRows(),SparseMatrixCSC{Float64,Int})
main(distribute,parts,FullyAssembledRows(),SparseMatrixCSR{0,Float64,Int},false)
main(distribute,parts,SubAssembledRows(),SparseMatrixCSC{Float64,Int},true)
end

function main(distribute,parts,strategy,local_matrix_type)
function main(distribute,parts,strategy,local_matrix_type,autodiff)
ranks = distribute(LinearIndices((prod(parts),)))
output = mkpath(joinpath(@__DIR__,"output"))

domain = (0,4,0,4)
cells = (4,4)
model = CartesianDiscreteModel(ranks,parts,domain,cells)

k = 1
u((x,y)) = (x+y)^k
σ(∇u) =(1.0+∇u∇u)*∇u
σ(∇u) = (1.0+∇u∇u)*∇u
(∇du,∇u) = (2*∇u∇du)*∇u + (1.0+∇u∇u)*∇du
f(x) = -divergence(y->σ((u,y)),x)

Expand All @@ -35,8 +34,12 @@ function main(distribute,parts,strategy,local_matrix_type)
V = TestFESpace(model,reffe,dirichlet_tags="boundary")
U = TrialFESpace(u,V)

assem=SparseMatrixAssembler(local_matrix_type,Vector{Float64},U,V,strategy)
op = FEOperator(r,j,U,V,assem)
assem = SparseMatrixAssembler(local_matrix_type,Vector{Float64},U,V,strategy)
if !autodiff
op = FEOperator(r,j,U,V,assem)
else
op = FEOperator(r,U,V,assem)
end

uh = zero(U)
b,A = residual_and_jacobian(op,uh)
Expand All @@ -59,7 +62,6 @@ function main(distribute,parts,strategy,local_matrix_type)
dΩo = Measure(Ωo,2*k)
eh = u - uh
@test sqrt(sum(( abs2(eh) )dΩo)) < 1.0e-9

end

end # module
1 change: 1 addition & 0 deletions test/TestApp/src/TestApp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,4 +18,5 @@ module TestApp
include("../../AdaptivityMultiFieldTests.jl")
include("../../BlockSparseMatrixAssemblersTests.jl")
include("../../VisualizationTests.jl")
include("../../AutodiffTests.jl")
end
3 changes: 3 additions & 0 deletions test/mpi/runtests_np4_body.jl
Original file line number Diff line number Diff line change
Expand Up @@ -59,5 +59,8 @@ function all_tests(distribute,parts)
PArrays.toc!(t,"Visualization")
end

TestApp.AutodiffTests.main(distribute,parts)
PArrays.toc!(t,"Autodiff")

display(t)
end
7 changes: 7 additions & 0 deletions test/sequential/AutodiffTests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
module AutodiffTestsSeq
using PartitionedArrays
include("../AutodiffTests.jl")
with_debug() do distribute
AutodiffTests.main(distribute,(2,2))
end
end # module

0 comments on commit 3943538

Please sign in to comment.