Skip to content

hadarshavit/asf

Repository files navigation

Python application

Algorithm Selection Framework (ASF)

ASF is a powerful library for algorithm selection and performance prediction. It allows users to easily create and use algorithm selectors with minimal code.

Features

  • Easy-to-use API for creating algorithm selectors
  • Supports various selection models including pairwise classifiers, multi-class classifiers, and performance models
  • Integration with popular machine learning libraries like scikit-learn

Quick Start

You can create an algorithm selector with just 2 lines of code. Here is an example using the PairwiseClassifier:

from asf.selectors import PairwiseClassifier
from sklearn.ensemble import RandomForestClassifier

# Create a PairwiseClassifier
selector = PairwiseClassifier(model_class=RandomForestClassifier, metadata=your_metadata)

# Fit the selector with feature and performance data
selector.fit(dummy_features, dummy_performance)

# Predict the best algorithm for new instances
predictions = selector.predict(new_features)

Future Features

In the future, ASF will include more features such as:

  • Empirical performance prediction
  • Feature selection
  • Support for ASlib scenarios
  • And more!

Installation

To install ASF, use pip:

pip install asf-lib

Documentation

For detailed documentation and examples, please refer to the official documentation.

Contributing

We welcome contributions! Please see our contributing guidelines for more details.

License

ASF is licensed under the MIT License. See the LICENSE file for more details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages