Master Thesis from Bonn University
SANSA Semantic Partitioning is a scalable and highly efficient application that first perform in-memory RDF Data (N-Triples) Partition and then pass the partitioning data to the SPARQL Query Engine layer to get efficient results. It is built on top of SANSA-Stack using the Scala and Spark technologies.
Read here: Scala & Spark
The datasets should be in N-Triples format.
./generate.sh --quiet --timing -u 1 --format NTRIPLES --consolidate Maximal --threads 8
./generate -fc -s nt -fn dataset_10MB -pc 100
direct download
-DLogFilePath=/SANSA-Semantic-Partitioning/src/main/resources/log/console.log
--input /SANSA-Semantic-Partitioning/src/main/resources/input/lubm/sample.nt
--queries /SANSA-Semantic-Partitioning/src/main/resources/queries/lubm/query-01.txt
--partitions /SANSA-Semantic-Partitioning/src/main/resources/output/partitioned-data/
--output /SANSA-Semantic-Partitioning/src/main/resources/output/query-result/
Read here: SPARQL Operators
Read here: SPARQL Queries
Read here: App Deploy
- Implement Prefix for SPARQL queries
- Add more operators
- Add support in FILTER:
- Math:
+, -, *, /
- SPARQL Tests:
bound
- SPARQL Accessors:
str
- Other:
sameTerm, langMatches, regex
- Math:
- Show predicate in the final result (for flexibility)