Ivan Jacob Agaloos Pesigan 2024-12-29
Generates Monte Carlo confidence intervals for standardized regression
coefficients (beta) and other effect sizes, including multiple
correlation, semipartial correlations, improvement in R-squared, squared
partial correlations, and differences in standardized regression
coefficients, for models fitted by lm()
. betaMC
combines ideas from
Monte Carlo confidence intervals for the indirect effect (Pesigan and
Cheung, 2023: http://doi.org/10.3758/s13428-023-02114-4) and the
sampling covariance matrix of regression coefficients (Dudgeon, 2017:
http://doi.org/10.1007/s11336-017-9563-z) to generate confidence
intervals effect sizes in regression.
You can install the CRAN release of betaMC
with:
install.packages("betaMC")
You can install the development version of betaMC
from
GitHub with:
if (!require("remotes")) install.packages("remotes")
remotes::install_github("jeksterslab/betaMC")
In this example, a multiple regression model is fitted using program
quality ratings (QUALITY
) as the regressand/outcome variable and
number of published articles attributed to the program faculty members
(NARTIC
), percent of faculty members holding research grants
(PCTGRT
), and percentage of program graduates who received support
(PCTSUPP
) as regressor/predictor variables using a data set from 1982
ratings of 46 doctoral programs in psychology in the USA (National
Research Council, 1982). Confidence intervals for the standardized
regression coefficients are generated using the BetaMC()
function from
the betaMC
package.
library(betaMC)
df <- betaMC::nas1982
Fit the regression model using the lm()
function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)
mvn <- MC(object, type = "mvn")
adf <- MC(object, type = "adf")
hc3 <- MC(object, type = "hc3")
BetaMC(mvn, alpha = 0.05)
#> Call:
#> BetaMC(object = mvn, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "mvn"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0755 20000 0.3402 0.6372
#> PCTGRT 0.3915 0.0771 20000 0.2366 0.5372
#> PCTSUPP 0.2632 0.0748 20000 0.1180 0.4104
BetaMC(adf, alpha = 0.05)
#> Call:
#> BetaMC(object = adf, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "adf"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0677 20000 0.3527 0.6162
#> PCTGRT 0.3915 0.0717 20000 0.2395 0.5200
#> PCTSUPP 0.2632 0.0768 20000 0.1080 0.4091
BetaMC(hc3, alpha = 0.05)
#> Call:
#> BetaMC(object = hc3, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0794 20000 0.3243 0.6341
#> PCTGRT 0.3915 0.0818 20000 0.2200 0.5410
#> PCTSUPP 0.2632 0.0855 20000 0.0878 0.4256
The betaMC
package also has functions to generate Monte Carlo
confidence intervals for other effect sizes such as RSqMC()
for
multiple correlation coefficients (R-squared and adjusted R-squared),
DeltaRSqMC()
for improvement in R-squared, SCorMC()
for semipartial
correlation coefficients, PCorMC()
for squared partial correlation
coefficients, and DiffBetaMC()
for differences of standardized
regression coefficients.
RSqMC(hc3, alpha = 0.05)
#> Call:
#> RSqMC(object = hc3, alpha = 0.05)
#>
#> R-squared and adjusted R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> rsq 0.8045 0.0623 20000 0.6433 0.8875
#> adj 0.7906 0.0667 20000 0.6178 0.8794
DeltaRSqMC(hc3, alpha = 0.05)
#> Call:
#> DeltaRSqMC(object = hc3, alpha = 0.05)
#>
#> Improvement in R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.1859 0.0684 20000 0.0511 0.3200
#> PCTGRT 0.1177 0.0547 20000 0.0261 0.2386
#> PCTSUPP 0.0569 0.0374 20000 0.0059 0.1502
SCorMC(hc3, alpha = 0.05)
#> Call:
#> SCorMC(object = hc3, alpha = 0.05)
#>
#> Semipartial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4312 0.0859 20000 0.2261 0.5657
#> PCTGRT 0.3430 0.0828 20000 0.1615 0.4884
#> PCTSUPP 0.2385 0.0781 20000 0.0766 0.3875
PCorMC(hc3, alpha = 0.05)
#> Call:
#> PCorMC(object = hc3, alpha = 0.05)
#>
#> Squared partial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4874 0.1181 20000 0.1822 0.6477
#> PCTGRT 0.3757 0.1150 20000 0.1074 0.5544
#> PCTSUPP 0.2254 0.1131 20000 0.0243 0.4540
DiffBetaMC(hc3, alpha = 0.05)
#> Call:
#> DiffBetaMC(object = hc3, alpha = 0.05)
#>
#> Differences of standardized regression slopes
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC-PCTGRT 0.1037 0.1417 20000 -0.1820 0.3777
#> NARTIC-PCTSUPP 0.2319 0.1330 20000 -0.0407 0.4819
#> PCTGRT-PCTSUPP 0.1282 0.1361 20000 -0.1438 0.3880
See GitHub Pages for package documentation.
To cite betaMC
in publications, please cite Pesigan & Cheung (2023).
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. https://doi.org/10.1007/s11336-017-9563-z
National Research Council. (1982). An assessment of research-doctorate programs in the United States: Social and behavioral sciences. National Academies Press. https://doi.org/10.17226/9781
Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods, 56(3), 1678–1696. https://doi.org/10.3758/s13428-023-02114-4