Skip to content

This is a personal semantic segmentation framework forked from LikeLy-Journey. Additionally support UPerNet(resnet, SwinTransformer), MaskFormer(SwinTransformer) referring to detectron2 and mmsegmentation. Meanwhile, a jupyter notebook version of visualization code is added to the repository and auto-mixed precision is added to the training loop.

License

Notifications You must be signed in to change notification settings

juliantang324/SegmenTron

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

63 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch for Semantic Segmentation

What's new

  • Implemented backbone code of swin transformer from detectron2.
  • Implemented model UPerNet from mmsegmentation along with pretrained checkpoints.
  • Implemented model MaskFormer from detectron2 along with pretrained checkpoints.

Introduce

This repository contains some models for semantic segmentation and the pipeline of training and testing models, implemented in PyTorch.

Model zoo

Model Backbone Datasets eval size Mean IoU(paper) Mean IoU(this repo)
DeepLabv3_plus xception65 cityscape(val) (1025,2049) 78.8 78.93
DeepLabv3_plus xception65 coco(val) 480/520 - 70.50
DeepLabv3_plus xception65 pascal_aug(val) 480/520 - 89.56
DeepLabv3_plus xception65 pascal_voc(val) 480/520 - 88.39
DeepLabv3_plus resnet101 cityscape(val) (1025,2049) - 78.27
Danet resnet101 cityscape(val) (1024,2048) 79.9 79.34
Pspnet resnet101 cityscape(val) (1025,2049) 78.63 77.00
UPerNet Swin-b ade20k(val) (480,480) 51.6 49.12
MaskFormer Swin-t ade20k(val) (480,480) 48.8 47.11
MaskFormer Swin-b ade20k(val) (480,480) 52.3 51.87

real-time models

Model Backbone Datasets eval size Mean IoU(paper) Mean IoU(this repo) FPS
ICnet resnet50(0.5) cityscape(val) (1024,2048) 67.8 - 41.39
DeepLabv3_plus mobilenetV2 cityscape(val) (1024,2048) 70.7 70.3 46.64
BiSeNet resnet18 cityscape(val) (1024,2048) - - 39.90
LEDNet - cityscape(val) (1024,2048) - - 31.78
CGNet - cityscape(val) (1024,2048) - - 46.11
HardNet - cityscape(val) (1024,2048) 75.9 - 69.06
DFANet xceptionA cityscape(val) (1024,2048) 70.3 - 21.46
HRNet w18_small_v1 cityscape(val) (1024,2048) 70.3 70.5 66.01
Fast_SCNN - cityscape(val) (1024,2048) 68.3 68.9 145.77

FPS was tested on V100.

Environments

  • python 3
  • torch >= 1.1.0
  • torchvision
  • pyyaml
  • Pillow
  • numpy

INSTALL

python setup.py develop

if you do not want to run CCNet, you do not need to install, just comment following line in segmentron/models/__init__.py

from .ccnet import CCNet

Dataset prepare

Support cityscape, coco, voc, ade20k now.

Please refer to DATA_PREPARE.md for dataset preparation.

Pretrained backbone models

pretrained backbone models will be download automatically in pytorch default directory(~/.cache/torch/checkpoints/).

Code structure

├── configs    # yaml config file
├── segmentron # core code
├── tools      # train eval code
└── datasets   # put datasets here 

Train

Train with a single GPU

CUDA_VISIBLE_DEVICES=0 python -u tools/train.py --config-file configs/cityscapes_deeplabv3_plus.yaml

Train with multiple GPUs

Auto-mixed precision is turned on by default. To turn it off, add argument "--use-amp".

CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Eval

Eval with a single GPU

You can download trained model from model zoo table above, or train by yourself.

CUDA_VISIBLE_DEVICES=0 python -u ./tools/eval.py --config-file configs/cityscapes_deeplabv3_plus.yaml \
TEST.TEST_MODEL_PATH your_test_model_path

Eval with a multiple GPUs

CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_test.sh ${CONFIG_FILE} ${GPU_NUM} \
TEST.TEST_MODEL_PATH your_test_model_path

References

About

This is a personal semantic segmentation framework forked from LikeLy-Journey. Additionally support UPerNet(resnet, SwinTransformer), MaskFormer(SwinTransformer) referring to detectron2 and mmsegmentation. Meanwhile, a jupyter notebook version of visualization code is added to the repository and auto-mixed precision is added to the training loop.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 84.7%
  • Python 14.8%
  • Other 0.5%