Skip to content

Imbalanced data problem image/maritime flags detection. Balancing by using SMOTE, ADASYN, Augmentation, Autoencoder and DGAN. Detection by using two-stage dectetors like: R-CNN, Faster R-CNN and Mask R-CNN.

Notifications You must be signed in to change notification settings

juliuszlosinski/Imbalanced-Data-Problem-for-Image-Detection-Two-Stage-Detectors

Repository files navigation

Goal: Research the Impact of Imbalanced and Balanced Maritime Code Flag Datasets on the Performance of Two-Stage Image Detectors (R-CNN, Faster R-CNN and Mask R-CNN).

Main metrics:

  • intersection over union (IoU),
  • precision and recall,
  • average precision (AP),
  • mean average precision (mAP),
  • F1 score (trade-off between precision and recall).

1. UML

TODO

2. Project organization

├── documentation       <- UML diagrams
├── balancers           <- Package with balancers and utils
│   ├── __init__.py     <- Package identicator
│   ├── smote.py        <- SMOTE balancer (interpolation)
│   ├── adasyn.py       <- ADASYN balancer (interpolation)
│   ├── augmentation.py <- Augmentation balancer (augmenting images like rotations, etc.)
│   ├── autoencoder.py  <- Autoencoder balancer (learning needed!)
│   ├── dgan.py         <- DGAN balancer (learning needed!)
│   ├── balancer.py     <- General balancer with all balancers (aggregating all of the above)
│   ├── annotations.py  <- Annotations module
│   └── configuration_reader.py  <- Balancer configuration reader
├── maritime-flags-dataset    <- Source and balanced flags (A-Z)
│   ├── ADASYN_balanced_flags <- Balanced flags by using ADASYN balancer
│   ├── SMOTE_balanced_flags  <- Balanced flags by using SMOTE balancer
│   ├── AUGMENTATION_balanced_flags  <- Balanced flags by using Augmentation balancer
│   ├── DGAN_balanced_flags  <- Balanced flags by using DGAN balancer
│   ├── AE_balanced_flags    <- Balanced flags by using Autoencoder balancer
│   ├── combined_flags       <- Combined/test images 
│   ├── two_flags            <- Balanced two flags (A and B) per 1000 images
│   └── imbalanced_flags     <- Source folder with imbalanced flags
├── balance.py <- Balancing dataset by using balancers package (BALANCING)
├── balancer_configuration.json <- Balancer configuration
└── detection.py <- Training and testing image detectors (EVALUATING)

3. Balancing approaches

3.1 Augmentation

image

3.2 SMOTE

image

3.3 ADASYN

image

3.4 Autoencoder

image

3.5 Deep Convolutional GAN

image

About

Imbalanced data problem image/maritime flags detection. Balancing by using SMOTE, ADASYN, Augmentation, Autoencoder and DGAN. Detection by using two-stage dectetors like: R-CNN, Faster R-CNN and Mask R-CNN.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages