Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Replacing pd.DataFrame with Generator[pd.DataFrame, None, None] The reason for replacing pd.DataFrame with Generator[pd.DataFrame, None, None] is to better reflect the actual output type of the random_ohlc_data function. Here are the specific reasons and benefits:
Reasons:
Accuracy of Output Type: The original code declared that the function returns a pd.DataFrame, but in reality, the function is a generator that yields multiple pd.DataFrame objects. Using Generator more accurately describes the function's behavior. Clarity of Type Hinting: Using Generator allows the code readers and users to more easily understand that the function returns a generator rather than a single DataFrame. This helps prevent potential misunderstandings and misuse.
Benefits:
Performance Improvement: Generators can generate data on-demand rather than generating all data at once, saving memory and improving performance, especially when dealing with large datasets. Lazy Evaluation: Generators allow for lazy evaluation, meaning data frames are only generated when needed. This can improve the efficiency and responsiveness of the code. Better Code Maintainability: Explicitly using generators makes the intent of the code clearer, enhancing readability and maintainability, making it easier for other developers to understand and maintain the code.