Skip to content
/ TGCRN Public

ICDE'24 "Time-aware Graph Structure Learning for Spatiao-temporal Forecasting"

Notifications You must be signed in to change notification settings

mb-Ma/TGCRN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TGCRN

Time-aware Graph Structure Learning for Spatiao-temporal Forecasting

Requirements

  • numpy >= 1.19.5
  • pytorch == 1.2.0
  • scipy == 1.4.1

Dependency enviorment can be installed using the following command:

pip install -r requirements.txt

Data preparation

The traffic data files for the Shanghai Metro, Hanghzou Metro, NYC-bike, and NYC-taxi are available at Gooolge Drive and Baidu Drive. They should be put into data/ corresponding folders.

Modeling training

cd ./model 

# HZMetro 
python run.py --dataset ../data/HZMetro --data HZ --lag 4 --horizon 4 --num_nodes 80

# SHMetro
python run.py --dataset ../data/SHMetro --data SH --lag 4 --horizon 4 --num_nodes 288

# Taxi
python run.py --dataset ../data/taxi --data taxi --lag 12 --horizon 12 --num_nodes 266

# Bike
python run.py --dataset ../data/bike --data bike --lag 12 --horizon 12 --num_nodes 250

Cite

Please cite our work if you find it useful.

@inproceedings{ma2024tgcrn,
  title={Learning Time-aware Graph Structures for Spatially Correlated Time Series Forecasting},
  author={Ma, Minbo and Hu, Jilin and Jensen, Christian S and Teng, Fei and Han, Peng and Xu, Zhiqiang and Li, Tianrui},
  booktitle={ICDE},
  year={2024}
}

About

ICDE'24 "Time-aware Graph Structure Learning for Spatiao-temporal Forecasting"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages