Time-aware Graph Structure Learning for Spatiao-temporal Forecasting
- numpy >= 1.19.5
- pytorch == 1.2.0
- scipy == 1.4.1
Dependency enviorment can be installed using the following command:
pip install -r requirements.txt
The traffic data files for the Shanghai Metro, Hanghzou Metro, NYC-bike, and NYC-taxi are available at Gooolge Drive and Baidu Drive. They should be put into data/ corresponding folders.
cd ./model
# HZMetro
python run.py --dataset ../data/HZMetro --data HZ --lag 4 --horizon 4 --num_nodes 80
# SHMetro
python run.py --dataset ../data/SHMetro --data SH --lag 4 --horizon 4 --num_nodes 288
# Taxi
python run.py --dataset ../data/taxi --data taxi --lag 12 --horizon 12 --num_nodes 266
# Bike
python run.py --dataset ../data/bike --data bike --lag 12 --horizon 12 --num_nodes 250
Please cite our work if you find it useful.
@inproceedings{ma2024tgcrn,
title={Learning Time-aware Graph Structures for Spatially Correlated Time Series Forecasting},
author={Ma, Minbo and Hu, Jilin and Jensen, Christian S and Teng, Fei and Han, Peng and Xu, Zhiqiang and Li, Tianrui},
booktitle={ICDE},
year={2024}
}