Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Add finetune method for MatterSim #68

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ dependencies = [
"torchaudio>=2.2.0",
"torchmetrics>=0.10.0",
"torchvision>=0.17.0",
"wandb",
]

[project.optional-dependencies]
Expand Down
248 changes: 248 additions & 0 deletions script/finetune_mattersim.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
# -*- coding: utf-8 -*-
import argparse
import os
import pickle as pkl
import random

import numpy as np
import torch
import torch.distributed
import wandb
from ase.units import GPa

from mattersim.datasets.utils.build import build_dataloader
from mattersim.forcefield.m3gnet.scaling import AtomScaling
from mattersim.forcefield.potential import Potential
from mattersim.utils.atoms_utils import AtomsAdaptor
from mattersim.utils.logger_utils import get_logger

logger = get_logger()
torch.distributed.init_process_group(backend="nccl")
local_rank = int(os.environ["LOCAL_RANK"])


def main(args):
args_dict = vars(args)
if args.wandb and local_rank == 0:
wandb_api_key = (
args.wandb_api_key
if args.wandb_api_key is not None
else os.getenv("WANDB_API_KEY")
)
wandb.login(key=wandb_api_key)
wandb.init(
project=args.wandb_project,
name=args.run_name,
config=args,
# id=args.run_name,
# resume="allow",
)

if args.wandb:
args_dict["wandb"] = wandb

torch.distributed.barrier()

# set random seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)

torch.cuda.set_device(local_rank)

if args.train_data_path.endswith(".pkl"):
with open(args.train_data_path, "rb") as f:
atoms_train = pkl.load(f)
else:
atoms_train = AtomsAdaptor.from_file(filename=args.train_data_path)
energies = []
forces = [] if args.include_forces else None
stresses = [] if args.include_stresses else None
logger.info("Processing training datasets...")
for atoms in atoms_train:
energies.append(atoms.get_potential_energy())
if args.include_forces:
forces.append(atoms.get_forces())
if args.include_stresses:
stresses.append(atoms.get_stress(voigt=False) / GPa) # convert to GPa

dataloader = build_dataloader(
atoms_train,
energies,
forces,
stresses,
shuffle=True,
pin_memory=True,
is_distributed=True,
**args_dict,
)

device = "cuda" if torch.cuda.is_available() else "cpu"
# build energy normalization module
if args.re_normalize:
scale = AtomScaling(
atoms=atoms_train,
total_energy=energies,
forces=forces,
verbose=True,
**args_dict,
).to(device)

if args.valid_data_path is not None:
if args.valid_data_path.endswith(".pkl"):
with open(args.valid_data_path, "rb") as f:
atoms_val = pkl.load(f)
else:
atoms_val = AtomsAdaptor.from_file(filename=args.train_data_path)
energies = []
forces = [] if args.include_forces else None
stresses = [] if args.include_stresses else None
logger.info("Processing validation datasets...")
for atoms in atoms_val:
energies.append(atoms.get_potential_energy())
if args.include_forces:
forces.append(atoms.get_forces())
if args.include_stresses:
stresses.append(atoms.get_stress(voigt=False) / GPa) # convert to GPa
val_dataloader = build_dataloader(
atoms_val,
energies,
forces,
stresses,
pin_memory=True,
is_distributed=True,
**args_dict,
)
else:
val_dataloader = None

potential = Potential.from_checkpoint(
load_path=args.load_model_path,
load_training_state=False,
**args_dict,
)

if args.re_normalize:
potential.model.set_normalizer(scale)

potential.model = torch.nn.parallel.DistributedDataParallel(potential.model)
torch.distributed.barrier()

potential.train_model(
dataloader,
val_dataloader,
loss=torch.nn.HuberLoss(delta=0.01),
is_distributed=True,
**args_dict,
)

if local_rank == 0 and args.save_checkpoint:
wandb.save(os.path.join(args.save_path, "best_model.pth"))


if __name__ == "__main__":
# Some important arguments
parser = argparse.ArgumentParser()

# path parameters
parser.add_argument(
"--run_name", type=str, default="example", help="name of the run"
)
parser.add_argument(
"--train_data_path", type=str, default="./sample.xyz", help="train data path"
)
parser.add_argument(
"--valid_data_path", type=str, default=None, help="valid data path"
)
parser.add_argument(
"--load_model_path",
type=str,
default="mattersim-v1.0.0-1m",
help="path to load the model",
)
parser.add_argument(
"--save_path", type=str, default="./results", help="path to save the model"
)
parser.add_argument(
"--save_checkpoint",
type=bool,
default=False,
action=argparse.BooleanOptionalAction,
)
parser.add_argument(
"--ckpt_interval",
type=int,
default=10,
help="save checkpoint every ckpt_interval epochs",
)
parser.add_argument("--device", type=str, default="cuda")

# model parameters
parser.add_argument("--cutoff", type=float, default=5.0, help="cutoff radius")
parser.add_argument(
"--threebody_cutoff",
type=float,
default=4.0,
help="cutoff radius for three-body term, which should be smaller than cutoff (two-body)", # noqa: E501
)

# training parameters
parser.add_argument("--epochs", type=int, default=1000, help="number of epochs")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--lr", type=float, default=2e-4)
parser.add_argument(
"--step_size",
type=int,
default=10,
help="step epoch for learning rate scheduler",
)
parser.add_argument(
"--include_forces",
type=bool,
default=True,
action=argparse.BooleanOptionalAction,
)
parser.add_argument(
"--include_stresses",
type=bool,
default=False,
action=argparse.BooleanOptionalAction,
)
parser.add_argument("--force_loss_ratio", type=float, default=1.0)
parser.add_argument("--stress_loss_ratio", type=float, default=0.1)
parser.add_argument("--early_stop_patience", type=int, default=10)
parser.add_argument("--seed", type=int, default=42)

# scaling parameters
parser.add_argument(
"--re_normalize",
type=bool,
default=False,
action=argparse.BooleanOptionalAction,
help="re-normalize the energy and forces according to the new data",
)
parser.add_argument("--scale_key", type=str, default="per_species_forces_rms")
parser.add_argument(
"--shift_key", type=str, default="per_species_energy_mean_linear_reg"
)
parser.add_argument("--init_scale", type=float, default=None)
parser.add_argument("--init_shift", type=float, default=None)
parser.add_argument(
"--trainable_scale",
type=bool,
default=False,
action=argparse.BooleanOptionalAction,
)
parser.add_argument(
"--trainable_shift",
type=bool,
default=False,
action=argparse.BooleanOptionalAction,
)

# wandb parameters
parser.add_argument("--wandb", action="store_true")
parser.add_argument("--wandb_api_key", type=str, default=None)
parser.add_argument("--wandb_project", type=str, default="wandb_test")
args = parser.parse_args()
main(args)
63 changes: 63 additions & 0 deletions script/vasprun_to_xyz.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# -*- coding: utf-8 -*-
import os
import random

from ase.io import write

from mattersim.utils.atoms_utils import AtomsAdaptor

vasp_files = [
"work/data/H/vasp/vasprun.xml",
"work/data/H/vasp_2/vasprun.xml",
"work/data/H/vasp_3/vasprun.xml",
"work/data/H/vasp_4/vasprun.xml",
"work/data/H/vasp_5/vasprun.xml",
"work/data/H/vasp_6/vasprun.xml",
"work/data/H/vasp_7/vasprun.xml",
"work/data/H/vasp_8/vasprun.xml",
"work/data/H/vasp_9/vasprun.xml",
"work/data/H/vasp_10/vasprun.xml",
]
train_ratio = 0.8
validation_ratio = 0.1
test_ratio = 0.1

save_dir = "./xyz_files"
os.makedirs(save_dir, exist_ok=True)


def main():
atoms_train = []
atoms_validation = []
atoms_test = []

random.seed(42)

for vasp_file in vasp_files:
atoms_list = AtomsAdaptor.from_file(filename=vasp_file)
random.shuffle(atoms_list)
num_atoms = len(atoms_list)
num_train = int(num_atoms * train_ratio)
num_validation = int(num_atoms * validation_ratio)

atoms_train.extend(atoms_list[:num_train])
atoms_validation.extend(atoms_list[num_train : num_train + num_validation])
atoms_test.extend(atoms_list[num_train + num_validation :])

print(
f"Total number of atoms: {len(atoms_train) + len(atoms_validation) + len(atoms_test)}" # noqa: E501
)

print(f"Number of atoms in the training set: {len(atoms_train)}")
print(f"Number of atoms in the validation set: {len(atoms_validation)}")
print(f"Number of atoms in the test set: {len(atoms_test)}")

# Save the training, validation, and test datasets to xyz files

write(f"{save_dir}/train.xyz", atoms_train)
write(f"{save_dir}/valid.xyz", atoms_validation)
write(f"{save_dir}/test.xyz", atoms_test)


if __name__ == "__main__":
main()
Loading