Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add cli scripts to quickly run a calculation #69

Open
wants to merge 20 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@ repos:
rev: v4.2.0
hooks:
- id: end-of-file-fixer
- id: fix-encoding-pragma
- id: mixed-line-ending
- id: trailing-whitespace
- id: check-json
Expand All @@ -24,4 +23,4 @@ repos:
rev: 6.0.0
hooks:
- id: flake8
args: ["--max-line-length=88", "--ignore=E203,W503"]
args: ["--max-line-length=88", "--ignore=E203,W503"]
4 changes: 3 additions & 1 deletion src/mattersim/applications/relax.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from ase.optimize import BFGS, FIRE
from ase.optimize.optimize import Optimizer
from ase.units import GPa
from deprecated import deprecated


class Relaxer(object):
Expand Down Expand Up @@ -55,7 +56,7 @@ def relax(
fmax: float = 0.01,
params_filter: dict = {},
**kwargs,
) -> Atoms:
) -> Tuple[bool, Atoms]:
"""
Relax the atoms object.

Expand Down Expand Up @@ -108,6 +109,7 @@ def relax(
return converged, atoms

@classmethod
@deprecated(reason="Use cli/applications/relax_structure.py instead.")
def relax_structures(
cls,
atoms: Union[Atoms, Iterable[Atoms]],
Expand Down
Empty file added src/mattersim/cli/__init__.py
Empty file.
Empty file.
142 changes: 142 additions & 0 deletions src/mattersim/cli/applications/phonon.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
import os
import uuid
from collections import defaultdict
from typing import List

import numpy as np
import pandas as pd
import yaml
from ase import Atoms
from loguru import logger
from pymatgen.core.structure import Structure
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm

from mattersim.applications.phonon import PhononWorkflow
from mattersim.cli.applications.relax import relax


def phonon(
atoms_list: List[Atoms],
*,
find_prim: bool = False,
work_dir: str = str(uuid.uuid4()),
save_csv: str = "results.csv.gz",
amplitude: float = 0.01,
supercell_matrix: np.ndarray = None,
qpoints_mesh: np.ndarray = None,
max_atoms: int = None,
enable_relax: bool = False,
**kwargs,
) -> dict:
"""
Predict phonon properties for a list of atoms.

Args:
atoms_list (List[Atoms]): List of ASE Atoms objects.
find_prim (bool, optional): If find the primitive cell and use it
to calculate phonon. Default to False.
work_dir (str, optional): workplace path to contain phonon result.
Defaults to data + chemical_symbols + 'phonon'
amplitude (float, optional): Magnitude of the finite difference to
displace in force constant calculation, in Angstrom. Defaults
to 0.01 Angstrom.
supercell_matrix (nd.array, optional): Supercell matrix for constr
-uct supercell, priority over than max_atoms. Defaults to None.
qpoints_mesh (nd.array, optional): Qpoint mesh for IBZ integral,
priority over than max_atoms. Defaults to None.
max_atoms (int, optional): Maximum atoms number limitation for the
supercell generation. If not set, will automatic generate super
-cell based on symmetry. Defaults to None.
enable_relax (bool, optional): Whether to relax the structure before
predicting phonon properties. Defaults to False.
"""
phonon_results = defaultdict(list)

for atoms in tqdm(
atoms_list, total=len(atoms_list), desc="Predicting phonon properties"
):
if enable_relax:
relaxed_results = relax(
[atoms],
constrain_symmetry=True,
work_dir=work_dir,
save_csv=save_csv.replace(".csv", "_relax.csv"),
)
structure = Structure.from_str(relaxed_results["structure"][0], fmt="json")
_atoms = AseAtomsAdaptor.get_atoms(structure)
_atoms.calc = atoms.calc
atoms = _atoms
ph = PhononWorkflow(
atoms=atoms,
find_prim=find_prim,
work_dir=work_dir,
amplitude=amplitude,
supercell_matrix=supercell_matrix,
qpoints_mesh=qpoints_mesh,
max_atoms=max_atoms,
)
has_imaginary, phonon = ph.run()
phonon_results["has_imaginary"].append(has_imaginary)
# phonon_results["phonon"].append(phonon)
phonon_results["phonon_band_plot"].append(
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_phonon_band.png")
)
phonon_results["phonon_dos_plot"].append(
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_phonon_dos.png")
)
os.rename(
os.path.join(os.path.abspath(work_dir), "band.yaml"),
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_band.yaml"),
)
os.rename(
os.path.join(os.path.abspath(work_dir), "phonopy_params.yaml"),
os.path.join(
os.path.abspath(work_dir), f"{atoms.symbols}_phonopy_params.yaml"
),
)
os.rename(
os.path.join(os.path.abspath(work_dir), "total_dos.dat"),
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_total_dos.dat"),
)
phonon_results["phonon_band"].append(
yaml.safe_load(
open(
os.path.join(
os.path.abspath(work_dir), f"{atoms.symbols}_band.yaml"
),
"r",
)
)
)
phonon_results["phonopy_params"].append(
yaml.safe_load(
open(
os.path.join(
os.path.abspath(work_dir),
f"{atoms.symbols}_phonopy_params.yaml",
),
"r",
)
)
)
phonon_results["total_dos"].append(
np.loadtxt(
os.path.join(
os.path.abspath(work_dir), f"{atoms.symbols}_total_dos.dat"
),
comments="#",
)
)

if not os.path.exists(work_dir):
os.makedirs(work_dir)

logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}")
df = pd.DataFrame(phonon_results)
df.to_csv(
os.path.join(work_dir, save_csv.replace(".csv", "_phonon.csv")),
index=False,
mode="a",
)
return phonon_results
98 changes: 98 additions & 0 deletions src/mattersim/cli/applications/relax.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
import os
import uuid
from collections import defaultdict
from typing import List, Union

import pandas as pd
from ase import Atoms
from ase.constraints import Filter
from ase.optimize.optimize import Optimizer
from ase.units import GPa
from loguru import logger
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm

from mattersim.applications.relax import Relaxer


def relax(
atoms_list: List[Atoms],
*,
optimizer: Union[str, Optimizer] = "FIRE",
filter: Union[str, Filter, None] = None,
constrain_symmetry: bool = False,
fix_axis: Union[bool, List[bool]] = False,
pressure_in_GPa: float = None,
fmax: float = 0.01,
steps: int = 500,
work_dir: str = str(uuid.uuid4()),
save_csv: str = "results.csv.gz",
**kwargs,
) -> dict:
"""
Relax a list of atoms structures.

Args:
atoms_list (List[Atoms]): List of ASE Atoms objects.
optimizer (Union[str, Optimizer]): The optimizer to use. Default is "FIRE".
filter (Union[str, Filter, None]): The filter to use.
constrain_symmetry (bool): Whether to constrain symmetry. Default is False.
fix_axis (Union[bool, List[bool]]): Whether to fix the axis. Default is False.
pressure_in_GPa (float): Pressure in GPa to use for relaxation.
fmax (float): Maximum force tolerance for relaxation. Default is 0.01.
steps (int): Maximum number of steps for relaxation. Default is 500.
work_dir (str): Working directory for the calculations.
Default is a UUID with timestamp.
save_csv (str): Save the results to a CSV file. Default is `results.csv.gz`.

Returns:
pd.DataFrame: DataFrame containing the relaxed results.
"""
params_filter = {}

if pressure_in_GPa:
params_filter["scalar_pressure"] = (
pressure_in_GPa * GPa
) # convert GPa to eV/Angstrom^3
filter = "ExpCellFilter" if filter is None else filter
elif filter:
params_filter["scalar_pressure"] = 0.0

relaxer = Relaxer(
optimizer=optimizer,
filter=filter,
constrain_symmetry=constrain_symmetry,
fix_axis=fix_axis,
)

relaxed_results = defaultdict(list)
for atoms in tqdm(atoms_list, total=len(atoms_list), desc="Relaxing structures"):
converged, relaxed_atoms = relaxer.relax(
atoms,
params_filter=params_filter,
fmax=fmax,
steps=steps,
)
relaxed_results["converged"].append(converged)
relaxed_results["structure"].append(
AseAtomsAdaptor.get_structure(relaxed_atoms).to_json()
)
relaxed_results["energy"].append(relaxed_atoms.get_potential_energy())
relaxed_results["energy_per_atom"].append(
relaxed_atoms.get_potential_energy() / len(relaxed_atoms)
)
relaxed_results["forces"].append(relaxed_atoms.get_forces())
relaxed_results["stress"].append(relaxed_atoms.get_stress(voigt=False))
relaxed_results["stress_GPa"].append(
relaxed_atoms.get_stress(voigt=False) / GPa
)

logger.info(f"Relaxed structure: {relaxed_atoms}")

if not os.path.exists(work_dir):
os.makedirs(work_dir)

logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}")
df = pd.DataFrame(relaxed_results)
df.to_csv(os.path.join(work_dir, save_csv), index=False, mode="a")
return relaxed_results
46 changes: 46 additions & 0 deletions src/mattersim/cli/applications/singlepoint.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
import os
import uuid
from collections import defaultdict
from typing import List

import pandas as pd
from ase import Atoms
from ase.units import GPa
from loguru import logger
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm


def singlepoint(
atoms_list: List[Atoms],
*,
work_dir: str = str(uuid.uuid4()),
save_csv: str = "results.csv.gz",
**kwargs,
) -> dict:
"""
Predict single point properties for a list of atoms.

"""
logger.info("Predicting single point properties.")
predicted_properties = defaultdict(list)
for atoms in tqdm(
atoms_list, total=len(atoms_list), desc="Predicting single point properties"
):
predicted_properties["structure"].append(AseAtomsAdaptor.get_structure(atoms))
predicted_properties["energy"].append(atoms.get_potential_energy())
predicted_properties["energy_per_atom"].append(
atoms.get_potential_energy() / len(atoms)
)
predicted_properties["forces"].append(atoms.get_forces())
predicted_properties["stress"].append(atoms.get_stress(voigt=False))
predicted_properties["stress_GPa"].append(atoms.get_stress(voigt=False) / GPa)

if not os.path.exists(work_dir):
os.makedirs(work_dir)

logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}")

df = pd.DataFrame(predicted_properties)
df.to_csv(os.path.join(work_dir, save_csv), index=False, mode="a")
return predicted_properties
Loading
Loading