-
Notifications
You must be signed in to change notification settings - Fork 339
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
enhance: Add example for milvus client about expression template (#2443)
Signed-off-by: Cai Zhang <cai.zhang@zilliz.com>
- Loading branch information
1 parent
400685f
commit 063f0df
Showing
1 changed file
with
104 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
import numpy as np | ||
from pymilvus import ( | ||
MilvusClient, | ||
DataType, | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
search_latency_fmt = "search latency = {:.4f}s" | ||
num_entities, dim = 3000, 8 | ||
|
||
collection_name = "hello_milvus" | ||
milvus_client = MilvusClient("http://localhost:19530") | ||
|
||
has_collection = milvus_client.has_collection(collection_name, timeout=5) | ||
if has_collection: | ||
milvus_client.drop_collection(collection_name) | ||
|
||
schema = milvus_client.create_schema(auto_id=False, description="hello_milvus is the simplest demo to introduce the APIs") | ||
schema.add_field("pk", DataType.VARCHAR, is_primary=True, max_length=100) | ||
schema.add_field("random", DataType.DOUBLE) | ||
schema.add_field("embeddings", DataType.FLOAT_VECTOR, dim=dim) | ||
|
||
index_params = milvus_client.prepare_index_params() | ||
index_params.add_index(field_name = "embeddings", index_type = "IVF_FLAT", metric_type="L2", nlist=128) | ||
|
||
print(fmt.format("Create collection `hello_milvus`")) | ||
|
||
milvus_client.create_collection(collection_name, schema=schema, index_params=index_params, consistency_level="Strong") | ||
|
||
|
||
print(fmt.format("Start inserting entities")) | ||
rng = np.random.default_rng(seed=19530) | ||
entities = [ | ||
# provide the pk field because `auto_id` is set to False | ||
[str(i) for i in range(num_entities)], | ||
rng.random(num_entities).tolist(), # field random, only supports list | ||
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list | ||
] | ||
|
||
rows = [ {"pk": entities[0][i], "random": entities[1][i], "embeddings": entities[2][i]} for i in range (num_entities)] | ||
|
||
insert_result = milvus_client.insert(collection_name, rows) | ||
|
||
|
||
print(fmt.format("Start loading")) | ||
milvus_client.load_collection(collection_name) | ||
|
||
field_name = "embeddings" | ||
|
||
req_list = [] | ||
nq = 1 | ||
default_limit = 5 | ||
vectors_to_search = [] | ||
|
||
filters = { | ||
"pk == {str}": {"str": "10"}, | ||
"pk in {list}": {"list": ["1", "10", "100"]}, | ||
"random > {target}": {"target": 5}, | ||
"random <= {target}": {"target": 111.5}, | ||
"{min} <= random < {max}": {"min": 0, "max": 9999}, | ||
} | ||
|
||
search_param = { | ||
"data": vectors_to_search, | ||
"anns_field": field_name, | ||
"param": {"metric_type": "L2"}, | ||
"limit": default_limit} | ||
vectors_to_search = rng.random((nq, dim)) | ||
|
||
for filter, filter_params in filters.items(): | ||
print(f"search with filter: {filter}") | ||
result = milvus_client.search(collection_name=collection_name, data=vectors_to_search, filter=filter, limit=3, | ||
output_fields=["random"], search_params=search_param, filter_params=filter_params) | ||
|
||
for hits in result: | ||
for hit in hits: | ||
print(f"hit: {hit}") | ||
|
||
query_results = milvus_client.query(collection_name, filter=filter, output_fields=["random"], | ||
filter_params=filter_params, limit=3) | ||
for ret in query_results: | ||
print("query result: ", ret) | ||
|
||
print(fmt.format("Search after delete")) | ||
ids = insert_result["ids"] | ||
filter = "pk in {list}" | ||
filter_params = {"list": [ids[0], ids[1]]} | ||
print(f"Start deleting with filter `{filter}`") | ||
|
||
result = milvus_client.query(collection_name, filter=filter, output_fields=["random"], | ||
filter_params=filter_params, limit=3) | ||
print(f"query before delete by filter=`{filter}` -> result: \n-{result[0]}\n-{result[1]}\n") | ||
|
||
milvus_client.delete(collection_name=collection_name, filter=filter, filter_params=filter_params) | ||
|
||
result = milvus_client.query(collection_name, filter=filter, output_fields=["random"], | ||
filter_params=filter_params, limit=3) | ||
print(f"query after delete by filter=`{filter}` -> result: {result}\n") | ||
|
||
print(fmt.format("Release collection")) | ||
milvus_client.release_collection(collection_name) | ||
|
||
print(fmt.format("Drop collection")) | ||
milvus_client.drop_collection(collection_name) |