Skip to content

🔄🌳⚡ The Rotation Forest implementation for Big Data on Apache Spark

License

Notifications You must be signed in to change notification settings

mjuez/rotation-forest-bd

Repository files navigation

RotationForest-BD: Rotation Forest for Big Data

https://doi.org/10.1016/j.inffus.2021.03.007

This repository contains an implementation of Rotation Forest [1] for Apache Spark framework.

By means of using parallel PCA provided by Spark and a novel approach for rotating the data using parallel matrix multiplications, Rotation Forest can now be used within Big Data.

RotationForest-BD is currently implemented in Scala 2.12 for Apache Spark 3.0.1.

Authors

  • Mario Juez-Gil <mariojg@ubu.es>
  • Álvar Arnaiz-González
  • Juan J. Rodríguez
  • Carlos López-Nozal
  • César García-Osorio

Affiliation:
Departamento de Ingeniería Informática
Universidad de Burgos
ADMIRABLE Research Group

Experiments

The experiments are available in this repository.

Installation

RotationForest-BD is available on SparkPackages.

It can be installed as follows:

  • spark-shell, pyspark, or spark-submit:
> $SPARK_HOME/bin/spark-shell --packages mjuez:rotation-forest-bd:1.0.0
  • sbt:
resolvers += "Spark Packages Repo" at "http://dl.bintray.com/spark-packages/maven"

libraryDependencies += "mjuez" % "rotation-forest-bd" % "1.0.0"
  • Maven:
<dependencies>
  <!-- list of dependencies -->
  <dependency>
    <groupId>mjuez</groupId>
    <artifactId>rotation-forest-bd</artifactId>
    <version>1.0.0</version>
  </dependency>
</dependencies>
<repositories>
  <!-- list of other repositories -->
  <repository>
    <id>SparkPackagesRepo</id>
    <url>http://dl.bintray.com/spark-packages/maven</url>
  </repository>
</repositories>

Basic Usage

RotationForest-BD is a Spark Classifier. It has a fit method that returns a trained classification model using an input dataset. That model has a transform method for classifying new instances.

RotationForest-BD may be adjusted using the following parameters:

  • groupParamsAsNumberOfGroups: Wether minGroup and maxGroup params refer to the number of groups (true) or to its size (false). Default: true.
  • minGroup: Minimum number of groups of sub-features when groupParamAsNumberOfGrups is true. When false, refers to the minimum size of each sub-feature group. Default: 4.
  • maxGroup: Maximum number of groups of sub-features when groupParamAsNumberOfGrups is true. When false, refers to the maximum size of each sub-feature group. Default: 4.
  • bootstrapSampleSize: Percentage of training examples that will be used for cumputing each rotation of the data. Default: 0.25.
  • numRotations: The number of rotations that will be performed to the training data. Each rotation will be the training data of a single RandomForest. Default: 10.
  • normalizeData: When true, input dataset will be normalized. Data normalization could improve the performance. Default: true.

As Rotation Forest is a tree-based ensemble, which specifically uses the Spark Random Forest implementation as base classifier, all Random Forest parameters could also be adjusted: numTrees bootstrap, subsamplingRate, maxDepth, maxBins, minInstancesPerNode, minWeightFractionPerNode, minInfoGain, checkpointInterval, seed, maxMemoryInMB, leafCol, and cacheNodeIds. For a detailed explanation about the use of any of those parameters, you should refer to the Spark Random Forest documentation.

The following example shows how to build and save a Rotation Forest ensemble where data is rotated 10 times and each rotation is used to train 10 trees. Thus, the ensemble size will be 100 (10x10):

import org.apache.spark.ml.classification.RotationForestClassifier
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.Pipeline

// reading training dataset
// two columns: label, and features
val trainDS = session.read
                .format("libsvm")
                .option("inferSchema", "true")
                .load("training_dataset.libsvm")

// String Indexer configuration
val si = new StringIndexer()
          .setInputCol("label")
          .setOutputCol("iLabel")

// Rotation Forest configuration
val rotfc = new RotationForestClassifier()
            .setLabelCol("ilabel")
            .setNumRotations(10)
            .setNumTrees(10)
            .setSeed(46)

// Building and fitting pipeline
val pipeline = new Pipeline().setStages(Array(si, rotfc))
val rotfModel = pipeline.fit(trainDS)

// Saving the model
rotfModel.write.overwrite().save("rotfmodel")

For loading a model and using it to make predictions, the following should be done:

import org.apache.spark.ml.PipelineModel

// reading test dataset
// one column: features
val testDS = session.read
                .format("libsvm")
                .option("inferSchema", "true")
                .load("test_dataset.libsvm")

// loading the model
val loadedRotfModel = PipelineModel.load("rotfmodel")

// making predictions
val predictDF = loadedRotfModel.transform(testDS)

Contribute

Feel free to submit any pull requests 😊

References

[1] Rodriguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation Forest: A New Classifier Ensemble Method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1619–1630. https://doi.org/10.1109/TPAMI.2006.211

Aknowledgements

This work was supported through project TIN2015-67534-P (MINECO/FEDER, UE) of the Ministerio de Economía y Competitividad of the Spanish Government, projects BU085P17 and BU055P20 (JCyL/FEDER, UE) of the Junta de Castilla y León (both projects co-financed through European Union FEDER funds), and by the Consejería de Educación of the Junta de Castilla y León and the European Social Fund through a pre-doctoral grant (EDU/1100/2017). The project leading to these results has received also funding from "la Caixa" Foundation, under agreement LCF/PR/PR18/51130007. This material is based upon work supported by Google Cloud.

License

This work is licensed under Apache-2.0.

Citation policy

Please cite this research as:

@ARTICLE{juezgil2021rotfbd,
title = {Rotation Forest for Big Data},
author = {Juez-Gil, Mario and Arnaiz-Gonz{\'a}lez, {\'A}lvar and Rodr{\'\i}guez, Juan J and L{\'o}pez-Nozal, Carlos and Garc{\'\i}a-Osorio, C{\'e}sar},
journal = {Information Fusion},
year = {2021},
month = {oct},
volume = {74},
pages = {39-49},
issn = {1566-2535},
doi = {https://doi.org/10.1016/j.inffus.2021.03.007},
url = {https://www.sciencedirect.com/science/article/pii/S1566253521000634},
keywords = {Rotation Forest, Random Forest, Ensemble learning, Machine learning, Big Data, Spark},
publisher={Elsevier}
}

About

🔄🌳⚡ The Rotation Forest implementation for Big Data on Apache Spark

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages