MLC is a Python-first toolkit that streamlines the development of AI compilers, runtimes, and compound AI systems with its Pythonic dataclasses, structure-aware tooling, and Python-based text formats.
Beyond pure Python, MLC natively supports zero-copy interoperation with C++ plugins, and enables a smooth engineering practice transitioning from Python to hybrid or Python-free development.
pip install -U mlc-python
MLC dataclass is similar to Pythonβs native dataclass:
import mlc.dataclasses as mlcd
@mlcd.py_class("demo.MyClass")
class MyClass(mlcd.PyClass):
a: int
b: str
c: float | None
instance = MyClass(12, "test", c=None)
Type safety. MLC dataclass enforces strict type checking using Cython and C++.
>>> instance.c = 10; print(instance)
demo.MyClass(a=12, b='test', c=10.0)
>>> instance.c = "wrong type"
TypeError: must be real number, not str
>>> instance.non_exist = 1
AttributeError: 'MyClass' object has no attribute 'non_exist' and no __dict__ for setting new attributes
Serialization. MLC dataclasses are picklable and JSON-serializable.
>>> MyClass.from_json(instance.json())
demo.MyClass(a=12, b='test', c=None)
>>> import pickle; pickle.loads(pickle.dumps(instance))
demo.MyClass(a=12, b='test', c=None)
An extra structure
field are used to specify a dataclass's structure, indicating def site and scoping in an IR.
Define a toy IR with `structure`.
import mlc.dataclasses as mlcd
@mlcd.py_class
class Expr(mlcd.PyClass):
def __add__(self, other):
return Add(a=self, b=other)
@mlcd.py_class(structure="nobind")
class Add(Expr):
a: Expr
b: Expr
@mlcd.py_class(structure="var")
class Var(Expr):
name: str = mlcd.field(structure=None) # excludes `name` from defined structure
@mlcd.py_class(structure="bind")
class Let(Expr):
rhs: Expr
lhs: Var = mlcd.field(structure="bind") # `Let.lhs` is the def-site
body: Expr
Structural equality. Member method eq_s
compares the structural equality (alpha equivalence) of two IRs represented by MLC's structured dataclass.
>>> x, y, z = Var("x"), Var("y"), Var("z")
>>> L1 = Let(rhs=x + y, lhs=z, body=z) # let z = x + y; z
>>> L2 = Let(rhs=y + z, lhs=x, body=x) # let x = y + z; x
>>> L3 = Let(rhs=x + x, lhs=z, body=z) # let z = x + x; z
>>> L1.eq_s(L2)
True
>>> L1.eq_s(L3, assert_mode=True)
ValueError: Structural equality check failed at {root}.rhs.b: Inconsistent binding. RHS has been bound to a different node while LHS is not bound
Structural hashing. The structure of MLC dataclasses can be hashed via hash_s
, which guarantees if two dataclasses are alpha-equivalent, they will share the same structural hash:
>>> L1_hash, L2_hash, L3_hash = L1.hash_s(), L2.hash_s(), L3.hash_s()
>>> assert L1_hash == L2_hash
>>> assert L1_hash != L3_hash
IR Printer. By defining an __ir_print__
method, which converts an IR node to MLC's Python-style AST, MLC's IRPrinter
handles variable scoping, renaming and syntax highlighting automatically for a text format based on Python syntax.
Defining Python-based text format on a toy IR using `__ir_print__`.
import mlc.dataclasses as mlcd
import mlc.printer as mlcp
from mlc.printer import ast as mlt
@mlcd.py_class
class Expr(mlcd.PyClass): ...
@mlcd.py_class
class Stmt(mlcd.PyClass): ...
@mlcd.py_class
class Var(Expr):
name: str
def __ir_print__(self, printer: mlcp.IRPrinter, path: mlcp.ObjectPath) -> mlt.Node:
if not printer.var_is_defined(obj=self):
printer.var_def(obj=self, frame=printer.frames[-1], name=self.name)
return printer.var_get(obj=self)
@mlcd.py_class
class Add(Expr):
lhs: Expr
rhs: Expr
def __ir_print__(self, printer: mlcp.IRPrinter, path: mlcp.ObjectPath) -> mlt.Node:
lhs: mlt.Expr = printer(obj=self.lhs, path=path["a"])
rhs: mlt.Expr = printer(obj=self.rhs, path=path["b"])
return lhs + rhs
@mlcd.py_class
class Assign(Stmt):
lhs: Var
rhs: Expr
def __ir_print__(self, printer: mlcp.IRPrinter, path: mlcp.ObjectPath) -> mlt.Node:
rhs: mlt.Expr = printer(obj=self.rhs, path=path["b"])
printer.var_def(obj=self.lhs, frame=printer.frames[-1], name=self.lhs.name)
lhs: mlt.Expr = printer(obj=self.lhs, path=path["a"])
return mlt.Assign(lhs=lhs, rhs=rhs)
@mlcd.py_class
class Func(mlcd.PyClass):
name: str
args: list[Var]
stmts: list[Stmt]
ret: Var
def __ir_print__(self, printer: mlcp.IRPrinter, path: mlcp.ObjectPath) -> mlt.Node:
with printer.with_frame(mlcp.DefaultFrame()):
for arg in self.args:
printer.var_def(obj=arg, frame=printer.frames[-1], name=arg.name)
args: list[mlt.Expr] = [printer(obj=arg, path=path["args"][i]) for i, arg in enumerate(self.args)]
stmts: list[mlt.Expr] = [printer(obj=stmt, path=path["stmts"][i]) for i, stmt in enumerate(self.stmts)]
ret_stmt = mlt.Return(printer(obj=self.ret, path=path["ret"]))
return mlt.Function(
name=mlt.Id(self.name),
args=[mlt.Assign(lhs=arg, rhs=None) for arg in args],
decorators=[],
return_type=None,
body=[*stmts, ret_stmt],
)
# An example IR:
a, b, c, d, e = Var("a"), Var("b"), Var("c"), Var("d"), Var("e")
f = Func(
name="f",
args=[a, b, c],
stmts=[
Assign(lhs=d, rhs=Add(a, b)), # d = a + b
Assign(lhs=e, rhs=Add(d, c)), # e = d + c
],
ret=e,
)
Two printer APIs are provided for Python-based text format:
mlc.printer.to_python
that converts an IR fragment to Python text, andmlc.printer.print_python
that further renders the text with proper syntax highlighting.
>>> print(mlcp.to_python(f)) # Stringify to Python
def f(a, b, c):
d = a + b
e = d + c
return e
>>> mlcp.print_python(f) # Syntax highlighting
TBD
pip install --verbose --editable ".[dev]"
pre-commit install
This project uses cibuildwheel
to build cross-platform wheels. See .github/workflows/wheels.ym
for more details.
export CIBW_BUILD_VERBOSITY=3
export CIBW_BUILD="cp3*-manylinux_x86_64"
python -m pip install pipx
pipx run cibuildwheel==2.20.0 --output-dir wheelhouse