generated from mlcommons/mlperf_inference_submissions
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Results from GH action on NVIDIA_RTX4090x1
- Loading branch information
1 parent
0252038
commit 3912fed
Showing
85 changed files
with
41,220 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
TBD |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
TBD |
135 changes: 135 additions & 0 deletions
135
...a_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops). | ||
|
||
*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.* | ||
|
||
## Host platform | ||
|
||
* OS version: Linux-6.8.0-49-generic-x86_64-with-glibc2.29 | ||
* CPU version: x86_64 | ||
* Python version: 3.8.10 (default, Nov 7 2024, 13:10:47) | ||
[GCC 9.4.0] | ||
* MLCommons CM version: 3.5.2 | ||
|
||
## CM Run Command | ||
|
||
See [CM installation guide](https://docs.mlcommons.org/inference/install/). | ||
|
||
```bash | ||
pip install -U cmind | ||
|
||
cm rm cache -f | ||
|
||
cm pull repo mlcommons@mlperf-automations --checkout=225220c7d9bb7e66e5b9a1e1ebfc3e0180fbd094 | ||
|
||
cm run script \ | ||
--tags=app,mlperf,inference,generic,_nvidia,_retinanet,_tensorrt,_cuda,_valid,_r4.1-dev_default,_multistream \ | ||
--quiet=true \ | ||
--env.CM_QUIET=yes \ | ||
--env.CM_MLPERF_IMPLEMENTATION=nvidia \ | ||
--env.CM_MLPERF_MODEL=retinanet \ | ||
--env.CM_MLPERF_RUN_STYLE=valid \ | ||
--env.CM_MLPERF_SKIP_SUBMISSION_GENERATION=False \ | ||
--env.CM_DOCKER_PRIVILEGED_MODE=True \ | ||
--env.CM_MLPERF_BACKEND=tensorrt \ | ||
--env.CM_MLPERF_SUBMISSION_SYSTEM_TYPE=datacenter,edge \ | ||
--env.CM_MLPERF_CLEAN_ALL=True \ | ||
--env.CM_MLPERF_DEVICE=cuda \ | ||
--env.CM_MLPERF_SUBMISSION_DIVISION=closed \ | ||
--env.CM_MLPERF_USE_DOCKER=True \ | ||
--env.CM_NVIDIA_GPU_NAME=rtx_4090 \ | ||
--env.CM_HW_NAME=RTX4090x1 \ | ||
--env.CM_RUN_MLPERF_SUBMISSION_PREPROCESSOR=yes \ | ||
--env.CM_MLPERF_INFERENCE_PULL_CODE_CHANGES=yes \ | ||
--env.CM_MLPERF_INFERENCE_PULL_SRC_CHANGES=yes \ | ||
--env.OUTPUT_BASE_DIR=/home/arjun/gh_action_results \ | ||
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/gh_action_submissions \ | ||
--env.CM_MLPERF_SUBMITTER=MLCommons \ | ||
--env.CM_USE_DATASET_FROM_HOST=yes \ | ||
--env.CM_USE_MODEL_FROM_HOST=yes \ | ||
--env.CM_MLPERF_LOADGEN_ALL_SCENARIOS=yes \ | ||
--env.CM_MLPERF_LOADGEN_COMPLIANCE=yes \ | ||
--env.CM_MLPERF_SUBMISSION_RUN=yes \ | ||
--env.CM_RUN_MLPERF_ACCURACY=on \ | ||
--env.CM_RUN_SUBMISSION_CHECKER=yes \ | ||
--env.CM_TAR_SUBMISSION_DIR=yes \ | ||
--env.CM_MLPERF_SUBMISSION_GENERATION_STYLE=full \ | ||
--env.CM_MLPERF_INFERENCE_VERSION=4.1-dev \ | ||
--env.CM_RUN_MLPERF_INFERENCE_APP_DEFAULTS=r4.1-dev_default \ | ||
--env.CM_MLPERF_LOADGEN_ALL_MODES=yes \ | ||
--env.CM_MLPERF_INFERENCE_SOURCE_VERSION=4.1.23 \ | ||
--env.CM_MLPERF_LAST_RELEASE=v4.1 \ | ||
--env.CM_TMP_PIP_VERSION_STRING= \ | ||
--env.CM_MODEL=retinanet \ | ||
--env.CM_MLPERF_CLEAN_SUBMISSION_DIR=yes \ | ||
--env.CM_RERUN=yes \ | ||
--env.CM_MLPERF_LOADGEN_EXTRA_OPTIONS= \ | ||
--env.CM_MLPERF_LOADGEN_MODE=performance \ | ||
--env.CM_MLPERF_LOADGEN_SCENARIO=MultiStream \ | ||
--env.CM_MLPERF_LOADGEN_SCENARIOS,=SingleStream,Offline,MultiStream,Server \ | ||
--env.CM_MLPERF_LOADGEN_MODES,=performance,accuracy \ | ||
--env.CM_OUTPUT_FOLDER_NAME=valid_results \ | ||
--env.CM_DOCKER_REUSE_EXISTING_CONTAINER=yes \ | ||
--env.CM_DOCKER_DETACHED_MODE=yes \ | ||
--env.CM_MLPERF_INFERENCE_RESULTS_DIR_=/home/arjun/gh_action_results/valid_results \ | ||
--env.CM_DOCKER_CONTAINER_ID=363b93e2602b \ | ||
--env.CM_MLPERF_LOADGEN_COMPLIANCE_TEST=TEST01 \ | ||
--add_deps_recursive.compiler.tags=gcc \ | ||
--add_deps_recursive.coco2014-original.tags=_full \ | ||
--add_deps_recursive.coco2014-preprocessed.tags=_full \ | ||
--add_deps_recursive.imagenet-original.tags=_full \ | ||
--add_deps_recursive.imagenet-preprocessed.tags=_full \ | ||
--add_deps_recursive.openimages-original.tags=_full \ | ||
--add_deps_recursive.openimages-preprocessed.tags=_full \ | ||
--add_deps_recursive.openorca-original.tags=_full \ | ||
--add_deps_recursive.openorca-preprocessed.tags=_full \ | ||
--add_deps_recursive.coco2014-dataset.tags=_full \ | ||
--add_deps_recursive.igbh-dataset.tags=_full \ | ||
--add_deps_recursive.get-mlperf-inference-results-dir.tags=_version.r4_1-dev \ | ||
--add_deps_recursive.get-mlperf-inference-submission-dir.tags=_version.r4_1-dev \ | ||
--add_deps_recursive.mlperf-inference-nvidia-scratch-space.tags=_version.r4_1-dev \ | ||
--adr.compiler.tags=gcc \ | ||
--adr.coco2014-original.tags=_full \ | ||
--adr.coco2014-preprocessed.tags=_full \ | ||
--adr.imagenet-original.tags=_full \ | ||
--adr.imagenet-preprocessed.tags=_full \ | ||
--adr.openimages-original.tags=_full \ | ||
--adr.openimages-preprocessed.tags=_full \ | ||
--adr.openorca-original.tags=_full \ | ||
--adr.openorca-preprocessed.tags=_full \ | ||
--adr.coco2014-dataset.tags=_full \ | ||
--adr.igbh-dataset.tags=_full \ | ||
--adr.get-mlperf-inference-results-dir.tags=_version.r4_1-dev \ | ||
--adr.get-mlperf-inference-submission-dir.tags=_version.r4_1-dev \ | ||
--adr.mlperf-inference-nvidia-scratch-space.tags=_version.r4_1-dev \ | ||
--v=False \ | ||
--print_env=False \ | ||
--print_deps=False \ | ||
--dump_version_info=True \ | ||
--env.CM_DATASET_OPENIMAGES_PATH=/home/cmuser/CM/repos/local/cache/a0a0d3a06d08433f/install/validation/data \ | ||
--env.CM_OPENIMAGES_CALIBRATION_DATASET_PATH=/home/cmuser/CM/repos/local/cache/5fd3118f48654bf7/install/calibration/data \ | ||
--env.CM_DATASET_OPENIMAGES_ANNOTATIONS_DIR_PATH=/home/cmuser/CM/repos/local/cache/963b6d6671ce444c \ | ||
--env.OUTPUT_BASE_DIR=/cm-mount/home/arjun/gh_action_results \ | ||
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/cm-mount/home/arjun/gh_action_submissions \ | ||
--env.MLPERF_SCRATCH_PATH=/home/cmuser/CM/repos/local/cache/5b2b0cc913a4453a | ||
``` | ||
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts), | ||
you should simply reload mlcommons@mlperf-automations without checkout and clean CM cache as follows:* | ||
|
||
```bash | ||
cm rm repo mlcommons@mlperf-automations | ||
cm pull repo mlcommons@mlperf-automations | ||
cm rm cache -f | ||
|
||
``` | ||
|
||
## Results | ||
|
||
Platform: RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config | ||
|
||
Model Precision: int8 | ||
|
||
### Accuracy Results | ||
`mAP`: `37.301`, Required accuracy for closed division `>= 37.1745` | ||
|
||
### Performance Results | ||
`Samples per query`: `10894225.0` |
7 changes: 7 additions & 0 deletions
7
...retinanet/multistream/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
{ | ||
"starting_weights_filename": "https://zenodo.org/record/6617981/files/resnext50_32x4d_fpn.pth", | ||
"retraining": "no", | ||
"input_data_types": "int8", | ||
"weight_data_types": "int8", | ||
"weight_transformations": "quantization, affine fusion" | ||
} |
105 changes: 105 additions & 0 deletions
105
..._original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy_console.out
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
[2024-12-23 01:45:31,593 main.py:229 INFO] Detected system ID: KnownSystem.RTX4090x1 | ||
[2024-12-23 01:45:31,659 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so'] | ||
[2024-12-23 01:45:31,659 generate_conf_files.py:107 INFO] Generated measurements/ entries for RTX4090x1_TRT/retinanet/MultiStream | ||
[2024-12-23 01:45:31,659 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/cmuser/CM/repos/local/cache/c1d8c371d52d46a3/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e1ace0f9265f4e04aa8e64bd67cded3a.conf" --gpu_engines="./build/engines/RTX4090x1/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms | ||
[2024-12-23 01:45:31,659 __init__.py:53 INFO] Overriding Environment | ||
benchmark : Benchmark.Retinanet | ||
buffer_manager_thread_count : 0 | ||
data_dir : /home/cmuser/CM/repos/local/cache/5b2b0cc913a4453a/data | ||
disable_beta1_smallk : True | ||
gpu_batch_size : 2 | ||
gpu_copy_streams : 1 | ||
gpu_inference_streams : 1 | ||
input_dtype : int8 | ||
input_format : linear | ||
log_dir : /home/cmuser/CM/repos/local/cache/dfbf240f980947f5/repo/closed/NVIDIA/build/logs/2024.12.23-01.45.30 | ||
map_path : data_maps/open-images-v6-mlperf/val_map.txt | ||
mlperf_conf_path : /home/cmuser/CM/repos/local/cache/c1d8c371d52d46a3/inference/mlperf.conf | ||
multi_stream_expected_latency_ns : 0 | ||
multi_stream_samples_per_query : 8 | ||
multi_stream_target_latency_percentile : 99 | ||
precision : int8 | ||
preprocessed_data_dir : /home/cmuser/CM/repos/local/cache/5b2b0cc913a4453a/preprocessed_data | ||
scenario : Scenario.MultiStream | ||
system : SystemConfiguration(host_cpu_conf=CPUConfiguration(layout={CPU(name='13th Gen Intel(R) Core(TM) i9-13900K', architecture=<CPUArchitecture.x86_64: AliasedName(name='x86_64', aliases=(), patterns=())>, core_count=24, threads_per_core=1): 1}), host_mem_conf=MemoryConfiguration(host_memory_capacity=Memory(quantity=131.634476, byte_suffix=<ByteSuffix.GB: (1000, 3)>, _num_bytes=131634476000), comparison_tolerance=0.05), accelerator_conf=AcceleratorConfiguration(layout=defaultdict(<class 'int'>, {GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=450.0, pci_id='0x268410DE', compute_sm=89): 1})), numa_conf=None, system_id='RTX4090x1') | ||
tensor_path : build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear | ||
test_mode : AccuracyOnly | ||
use_deque_limit : True | ||
use_graphs : True | ||
user_conf_path : /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e1ace0f9265f4e04aa8e64bd67cded3a.conf | ||
system_id : RTX4090x1 | ||
config_name : RTX4090x1_retinanet_MultiStream | ||
workload_setting : WorkloadSetting(HarnessType.LWIS, AccuracyTarget.k_99, PowerSetting.MaxP) | ||
optimization_level : plugin-enabled | ||
num_profiles : 1 | ||
config_ver : lwis_k_99_MaxP | ||
accuracy_level : 99% | ||
inference_server : lwis | ||
skip_file_checks : False | ||
power_limit : None | ||
cpu_freq : None | ||
&&&& RUNNING Default_Harness # ./build/bin/harness_default | ||
[I] mlperf.conf path: /home/cmuser/CM/repos/local/cache/c1d8c371d52d46a3/inference/mlperf.conf | ||
[I] user.conf path: /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e1ace0f9265f4e04aa8e64bd67cded3a.conf | ||
Creating QSL. | ||
Finished Creating QSL. | ||
Setting up SUT. | ||
[I] [TRT] Loaded engine size: 73 MiB | ||
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +7, GPU +10, now: CPU 121, GPU 881 (MiB) | ||
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +1, GPU +10, now: CPU 122, GPU 891 (MiB) | ||
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +68, now: CPU 0, GPU 68 (MiB) | ||
[I] Device:0.GPU: [0] ./build/engines/RTX4090x1/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan has been successfully loaded. | ||
[E] [TRT] 3: [runtime.cpp::~Runtime::401] Error Code 3: API Usage Error (Parameter check failed at: runtime/rt/runtime.cpp::~Runtime::401, condition: mEngineCounter.use_count() == 1 Destroying a runtime before destroying deserialized engines created by the runtime leads to undefined behavior.) | ||
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 49, GPU 893 (MiB) | ||
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 49, GPU 901 (MiB) | ||
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +1528, now: CPU 0, GPU 1596 (MiB) | ||
[I] Start creating CUDA graphs | ||
[I] Capture 2 CUDA graphs | ||
[I] Finish creating CUDA graphs | ||
[I] Creating batcher thread: 0 EnableBatcherThreadPerDevice: false | ||
Finished setting up SUT. | ||
Starting warmup. Running for a minimum of 5 seconds. | ||
Finished warmup. Ran for 5.14663s. | ||
Starting running actual test. | ||
|
||
No warnings encountered during test. | ||
|
||
No errors encountered during test. | ||
Finished running actual test. | ||
Device Device:0.GPU processed: | ||
12392 batches of size 2 | ||
Memcpy Calls: 0 | ||
PerSampleCudaMemcpy Calls: 0 | ||
BatchedCudaMemcpy Calls: 12392 | ||
&&&& PASSED Default_Harness # ./build/bin/harness_default | ||
[2024-12-23 01:46:24,174 run_harness.py:166 INFO] Result: Accuracy run detected. | ||
[2024-12-23 01:46:24,175 __init__.py:46 INFO] Running command: python3 /home/cmuser/CM/repos/local/cache/dfbf240f980947f5/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/cmuser/CM/repos/local/cache/5b2b0cc913a4453a/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json | ||
loading annotations into memory... | ||
Done (t=0.34s) | ||
creating index... | ||
index created! | ||
Loading and preparing results... | ||
DONE (t=11.52s) | ||
creating index... | ||
index created! | ||
Running per image evaluation... | ||
Evaluate annotation type *bbox* | ||
DONE (t=102.60s). | ||
Accumulating evaluation results... | ||
DONE (t=22.98s). | ||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.373 | ||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.522 | ||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.404 | ||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.023 | ||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.125 | ||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.412 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.419 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.627 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.082 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.343 | ||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677 | ||
mAP=37.301% | ||
|
||
======================== Result summaries: ======================== | ||
|
Oops, something went wrong.