Skip to content

Commit

Permalink
Results from GH action on NVIDIA_RTX4090x1
Browse files Browse the repository at this point in the history
  • Loading branch information
arjunsuresh committed Jan 1, 2025
1 parent b8bb2a7 commit 4e00f85
Show file tree
Hide file tree
Showing 13 changed files with 488 additions and 492 deletions.
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops).

*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.*

## Host platform
Expand All @@ -19,7 +17,7 @@ pip install -U cmind

cm rm cache -f

cm pull repo mlcommons@mlperf-automations --checkout=c52956b27fa8d06ec8db53f885e1f05021e379e9
cm pull repo mlcommons@mlperf-automations --checkout=48ea6b46a7606d1c5d74909e94d5599dbe7ff9e1

cm run script \
--tags=app,mlperf,inference,generic,_nvidia,_3d-unet-99.9,_tensorrt,_cuda,_valid,_r4.1-dev_default,_singlestream \
Expand All @@ -41,8 +39,8 @@ cm run script \
--env.CM_RUN_MLPERF_SUBMISSION_PREPROCESSOR=yes \
--env.CM_MLPERF_INFERENCE_PULL_CODE_CHANGES=yes \
--env.CM_MLPERF_INFERENCE_PULL_SRC_CHANGES=yes \
--env.OUTPUT_BASE_DIR=/home/arjun/gh_action_results \
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/gh_action_submissions \
--env.OUTPUT_BASE_DIR=/cm-mount/home/arjun/gh_action_results \
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/cm-mount/home/arjun/gh_action_submissions \
--env.CM_MLPERF_SUBMITTER=MLCommons \
--env.CM_USE_DATASET_FROM_HOST=yes \
--env.CM_USE_MODEL_FROM_HOST=yes \
Expand Down Expand Up @@ -101,10 +99,7 @@ cm run script \
--v=False \
--print_env=False \
--print_deps=False \
--dump_version_info=True \
--env.OUTPUT_BASE_DIR=/cm-mount/home/arjun/gh_action_results \
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/cm-mount/home/arjun/gh_action_submissions \
--env.MLPERF_SCRATCH_PATH=/home/cmuser/CM/repos/local/cache/5b2b0cc913a4453a
--dump_version_info=True
```
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts),
you should simply reload mlcommons@mlperf-automations without checkout and clean CM cache as follows:*
Expand All @@ -126,4 +121,4 @@ Model Precision: int8
`DICE`: `0.86236`, Required accuracy for closed division `>= 0.86084`

### Performance Results
`90th percentile latency (ns)`: `437916477.0`
`90th percentile latency (ns)`: `437373498.0`
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
[2024-12-28 20:21:37,289 main.py:229 INFO] Detected system ID: KnownSystem.RTX4090x1
[2024-12-28 20:21:37,459 harness.py:249 INFO] The harness will load 3 plugins: ['build/plugins/pixelShuffle3DPlugin/libpixelshuffle3dplugin.so', 'build/plugins/conv3D1X1X1K4Plugin/libconv3D1X1X1K4Plugin.so', 'build/plugins/conv3D3X3X3C1K32Plugin/libconv3D3X3X3C1K32Plugin.so']
[2024-12-28 20:21:37,459 generate_conf_files.py:107 INFO] Generated measurements/ entries for RTX4090x1_TRT/3d-unet-99.9/SingleStream
[2024-12-28 20:21:37,459 __init__.py:46 INFO] Running command: ./build/bin/harness_3dunet --plugins="build/plugins/pixelShuffle3DPlugin/libpixelshuffle3dplugin.so,build/plugins/conv3D1X1X1K4Plugin/libconv3D1X1X1K4Plugin.so,build/plugins/conv3D3X3X3C1K32Plugin/libconv3D3X3X3C1K32Plugin.so" --logfile_outdir="/cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/3d-unet-99.9/singlestream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=43 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=1 --map_path="data_maps/kits19/val_map.txt" --mlperf_conf_path="/home/cmuser/CM/repos/local/cache/c1d8c371d52d46a3/inference/mlperf.conf" --tensor_path="build/preprocessed_data/KiTS19/inference/int8" --use_graphs=false --user_conf_path="/home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/cc8f1029244e4ffe9776f264e544dcfa.conf" --unet3d_sw_gaussian_patch_path="/home/cmuser/CM/repos/local/cache/5b2b0cc913a4453a/preprocessed_data/KiTS19/etc/gaussian_patches.npy" --gpu_engines="./build/engines/RTX4090x1/3d-unet/SingleStream/3d-unet-SingleStream-gpu-b1-int8.custom_k_99_9_MaxP.plan" --max_dlas=0 --slice_overlap_patch_kernel_cg_impl=false --scenario SingleStream --model 3d-unet
[2024-12-28 20:21:37,459 __init__.py:53 INFO] Overriding Environment
[2024-12-31 20:05:39,032 main.py:229 INFO] Detected system ID: KnownSystem.RTX4090x1
[2024-12-31 20:05:39,207 harness.py:249 INFO] The harness will load 3 plugins: ['build/plugins/pixelShuffle3DPlugin/libpixelshuffle3dplugin.so', 'build/plugins/conv3D1X1X1K4Plugin/libconv3D1X1X1K4Plugin.so', 'build/plugins/conv3D3X3X3C1K32Plugin/libconv3D3X3X3C1K32Plugin.so']
[2024-12-31 20:05:39,207 generate_conf_files.py:107 INFO] Generated measurements/ entries for RTX4090x1_TRT/3d-unet-99.9/SingleStream
[2024-12-31 20:05:39,207 __init__.py:46 INFO] Running command: ./build/bin/harness_3dunet --plugins="build/plugins/pixelShuffle3DPlugin/libpixelshuffle3dplugin.so,build/plugins/conv3D1X1X1K4Plugin/libconv3D1X1X1K4Plugin.so,build/plugins/conv3D3X3X3C1K32Plugin/libconv3D3X3X3C1K32Plugin.so" --logfile_outdir="/cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/3d-unet-99.9/singlestream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=43 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=1 --map_path="data_maps/kits19/val_map.txt" --mlperf_conf_path="/home/cmuser/CM/repos/local/cache/c1d8c371d52d46a3/inference/mlperf.conf" --tensor_path="build/preprocessed_data/KiTS19/inference/int8" --use_graphs=false --user_conf_path="/home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/f8483aa559ee4ac28508a0a20dd2f116.conf" --unet3d_sw_gaussian_patch_path="/home/cmuser/CM/repos/local/cache/5b2b0cc913a4453a/preprocessed_data/KiTS19/etc/gaussian_patches.npy" --gpu_engines="./build/engines/RTX4090x1/3d-unet/SingleStream/3d-unet-SingleStream-gpu-b1-int8.custom_k_99_9_MaxP.plan" --max_dlas=0 --slice_overlap_patch_kernel_cg_impl=false --scenario SingleStream --model 3d-unet
[2024-12-31 20:05:39,207 __init__.py:53 INFO] Overriding Environment
benchmark : Benchmark.UNET3D
buffer_manager_thread_count : 0
data_dir : /home/cmuser/CM/repos/local/cache/5b2b0cc913a4453a/data
Expand All @@ -11,7 +11,7 @@ gpu_copy_streams : 1
gpu_inference_streams : 1
input_dtype : int8
input_format : linear
log_dir : /home/cmuser/CM/repos/local/cache/dfbf240f980947f5/repo/closed/NVIDIA/build/logs/2024.12.28-20.21.36
log_dir : /home/cmuser/CM/repos/local/cache/dfbf240f980947f5/repo/closed/NVIDIA/build/logs/2024.12.31-20.05.38
map_path : data_maps/kits19/val_map.txt
mlperf_conf_path : /home/cmuser/CM/repos/local/cache/c1d8c371d52d46a3/inference/mlperf.conf
precision : int8
Expand All @@ -25,7 +25,7 @@ test_mode : AccuracyOnly
unet3d_sw_gaussian_patch_path : /home/cmuser/CM/repos/local/cache/5b2b0cc913a4453a/preprocessed_data/KiTS19/etc/gaussian_patches.npy
use_deque_limit : True
use_graphs : False
user_conf_path : /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/cc8f1029244e4ffe9776f264e544dcfa.conf
user_conf_path : /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/f8483aa559ee4ac28508a0a20dd2f116.conf
system_id : RTX4090x1
config_name : RTX4090x1_3d-unet_SingleStream
workload_setting : WorkloadSetting(HarnessType.Custom, AccuracyTarget.k_99_9, PowerSetting.MaxP)
Expand All @@ -39,23 +39,23 @@ power_limit : None
cpu_freq : None
&&&& RUNNING MLPerf_Inference_3DUNet_Harness # ./build/bin/harness_3dunet
[I] mlperf.conf path: /home/cmuser/CM/repos/local/cache/c1d8c371d52d46a3/inference/mlperf.conf
[I] user.conf path: /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/cc8f1029244e4ffe9776f264e544dcfa.conf
[I] user.conf path: /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/f8483aa559ee4ac28508a0a20dd2f116.conf
Creating QSL.
Finished Creating QSL.
Setting up SUT.
[I] [TRT] Loaded engine size: 31 MiB
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 80, GPU 1097 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +10, now: CPU 80, GPU 1107 (MiB)
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 79, GPU 1097 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +10, now: CPU 79, GPU 1107 (MiB)
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +29, now: CPU 0, GPU 29 (MiB)
[I] Device:0: ./build/engines/RTX4090x1/3d-unet/SingleStream/3d-unet-SingleStream-gpu-b1-int8.custom_k_99_9_MaxP.plan has been successfully loaded.
[E] [TRT] 3: [runtime.cpp::~Runtime::401] Error Code 3: API Usage Error (Parameter check failed at: runtime/rt/runtime.cpp::~Runtime::401, condition: mEngineCounter.use_count() == 1 Destroying a runtime before destroying deserialized engines created by the runtime leads to undefined behavior.)
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 48, GPU 1715 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +1, GPU +8, now: CPU 49, GPU 1723 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 48, GPU 1723 (MiB)
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +278, now: CPU 0, GPU 307 (MiB)
[I] Creating batcher thread: 0 EnableBatcherThreadPerDevice: true
Finished setting up SUT.
Starting warmup. Running for a minimum of 5 seconds.
Finished warmup. Ran for 5.05229s.
Finished warmup. Ran for 5.05395s.
Starting running actual test.

No warnings encountered during test.
Expand All @@ -68,8 +68,8 @@ Device Device:0 processed:
PerSampleCudaMemcpy Calls: 43
BatchedCudaMemcpy Calls: 0
&&&& PASSED MLPerf_Inference_3DUNet_Harness # ./build/bin/harness_3dunet
[2024-12-28 20:21:53,411 run_harness.py:166 INFO] Result: Accuracy run detected.
[2024-12-28 20:21:53,411 __init__.py:46 INFO] Running command: python3 code/3d-unet/tensorrt/accuracy_kits.py --log_file /cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/3d-unet-99.9/singlestream/accuracy/mlperf_log_accuracy.json
[2024-12-31 20:05:55,171 run_harness.py:166 INFO] Result: Accuracy run detected.
[2024-12-31 20:05:55,171 __init__.py:46 INFO] Running command: python3 code/3d-unet/tensorrt/accuracy_kits.py --log_file /cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/3d-unet-99.9/singlestream/accuracy/mlperf_log_accuracy.json
Loading necessary metadata...
Loading loadgen accuracy log...
Running postprocessing...
Expand Down
Loading

0 comments on commit 4e00f85

Please sign in to comment.