Skip to content

Commit

Permalink
Results from GH action on NVIDIA_RTX4090x2
Browse files Browse the repository at this point in the history
  • Loading branch information
arjunsuresh committed Jan 1, 2025
1 parent e3d48b1 commit a8ded8f
Show file tree
Hide file tree
Showing 53 changed files with 20,425 additions and 20,456 deletions.
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops).

*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.*

## Host platform
Expand All @@ -19,7 +17,7 @@ pip install -U cmind

cm rm cache -f

cm pull repo mlcommons@mlperf-automations --checkout=c52956b27fa8d06ec8db53f885e1f05021e379e9
cm pull repo mlcommons@mlperf-automations --checkout=48ea6b46a7606d1c5d74909e94d5599dbe7ff9e1

cm run script \
--tags=app,mlperf,inference,generic,_nvidia,_retinanet,_tensorrt,_cuda,_valid,_r4.1-dev_default,_multistream \
Expand All @@ -41,8 +39,8 @@ cm run script \
--env.CM_RUN_MLPERF_SUBMISSION_PREPROCESSOR=yes \
--env.CM_MLPERF_INFERENCE_PULL_CODE_CHANGES=yes \
--env.CM_MLPERF_INFERENCE_PULL_SRC_CHANGES=yes \
--env.OUTPUT_BASE_DIR=/home/arjun/gh_action_results \
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/gh_action_submissions \
--env.OUTPUT_BASE_DIR=/cm-mount/home/arjun/gh_action_results \
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/cm-mount/home/arjun/gh_action_submissions \
--env.CM_MLPERF_SUBMITTER=MLCommons \
--env.CM_USE_DATASET_FROM_HOST=yes \
--env.CM_USE_MODEL_FROM_HOST=yes \
Expand Down Expand Up @@ -71,7 +69,7 @@ cm run script \
--env.CM_DOCKER_REUSE_EXISTING_CONTAINER=yes \
--env.CM_DOCKER_DETACHED_MODE=yes \
--env.CM_MLPERF_INFERENCE_RESULTS_DIR_=/home/arjun/gh_action_results/valid_results \
--env.CM_DOCKER_CONTAINER_ID=396a1e82df17 \
--env.CM_DOCKER_CONTAINER_ID=61091b62f0c1 \
--env.CM_MLPERF_LOADGEN_COMPLIANCE_TEST=TEST01 \
--add_deps_recursive.compiler.tags=gcc \
--add_deps_recursive.coco2014-original.tags=_full \
Expand Down Expand Up @@ -104,13 +102,7 @@ cm run script \
--v=False \
--print_env=False \
--print_deps=False \
--dump_version_info=True \
--env.CM_DATASET_OPENIMAGES_PATH=/home/cmuser/CM/repos/local/cache/cae305b311f24865/install/validation/data \
--env.CM_OPENIMAGES_CALIBRATION_DATASET_PATH=/home/cmuser/CM/repos/local/cache/f5639d7dd9ba459b/install/calibration/data \
--env.CM_DATASET_OPENIMAGES_ANNOTATIONS_DIR_PATH=/home/cmuser/CM/repos/local/cache/e44ef68a8a294e31 \
--env.OUTPUT_BASE_DIR=/cm-mount/home/arjun/gh_action_results \
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/cm-mount/home/arjun/gh_action_submissions \
--env.MLPERF_SCRATCH_PATH=/home/cmuser/CM/repos/local/cache/4db00c74da1e44c8
--dump_version_info=True
```
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts),
you should simply reload mlcommons@mlperf-automations without checkout and clean CM cache as follows:*
Expand All @@ -132,4 +124,4 @@ Model Precision: int8
`mAP`: `37.328`, Required accuracy for closed division `>= 37.1745`

### Performance Results
`Samples per query`: `5630020.0`
`Samples per query`: `5638927.0`
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
[2024-12-29 01:50:00,880 main.py:229 INFO] Detected system ID: KnownSystem.RTX4090x2
[2024-12-29 01:50:00,959 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so']
[2024-12-29 01:50:00,960 generate_conf_files.py:107 INFO] Generated measurements/ entries for RTX4090x2_TRT/retinanet/MultiStream
[2024-12-29 01:50:00,960 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x2-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/cmuser/CM/repos/local/cache/5860c00d55d14786/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/9488b6f2bf684263b7870bbb4cc55706.conf" --gpu_engines="./build/engines/RTX4090x2/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms
[2024-12-29 01:50:00,960 __init__.py:53 INFO] Overriding Environment
[2025-01-01 01:53:50,761 main.py:229 INFO] Detected system ID: KnownSystem.RTX4090x2
[2025-01-01 01:53:50,842 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so']
[2025-01-01 01:53:50,843 generate_conf_files.py:107 INFO] Generated measurements/ entries for RTX4090x2_TRT/retinanet/MultiStream
[2025-01-01 01:53:50,843 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x2-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/cmuser/CM/repos/local/cache/5860c00d55d14786/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b33797d6002e44c982e396eab6cb71b2.conf" --gpu_engines="./build/engines/RTX4090x2/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms
[2025-01-01 01:53:50,843 __init__.py:53 INFO] Overriding Environment
benchmark : Benchmark.Retinanet
buffer_manager_thread_count : 0
data_dir : /home/cmuser/CM/repos/local/cache/4db00c74da1e44c8/data
Expand All @@ -12,7 +12,7 @@ gpu_copy_streams : 1
gpu_inference_streams : 1
input_dtype : int8
input_format : linear
log_dir : /home/cmuser/CM/repos/local/cache/94a57f78972843c6/repo/closed/NVIDIA/build/logs/2024.12.29-01.49.59
log_dir : /home/cmuser/CM/repos/local/cache/94a57f78972843c6/repo/closed/NVIDIA/build/logs/2025.01.01-01.53.49
map_path : data_maps/open-images-v6-mlperf/val_map.txt
mlperf_conf_path : /home/cmuser/CM/repos/local/cache/5860c00d55d14786/inference/mlperf.conf
multi_stream_expected_latency_ns : 0
Expand All @@ -26,7 +26,7 @@ tensor_path : build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet
test_mode : AccuracyOnly
use_deque_limit : True
use_graphs : True
user_conf_path : /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/9488b6f2bf684263b7870bbb4cc55706.conf
user_conf_path : /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b33797d6002e44c982e396eab6cb71b2.conf
system_id : RTX4090x2
config_name : RTX4090x2_retinanet_MultiStream
workload_setting : WorkloadSetting(HarnessType.LWIS, AccuracyTarget.k_99, PowerSetting.MaxP)
Expand All @@ -40,7 +40,7 @@ power_limit : None
cpu_freq : None
&&&& RUNNING Default_Harness # ./build/bin/harness_default
[I] mlperf.conf path: /home/cmuser/CM/repos/local/cache/5860c00d55d14786/inference/mlperf.conf
[I] user.conf path: /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/9488b6f2bf684263b7870bbb4cc55706.conf
[I] user.conf path: /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b33797d6002e44c982e396eab6cb71b2.conf
Creating QSL.
Finished Creating QSL.
Setting up SUT.
Expand Down Expand Up @@ -69,7 +69,7 @@ Setting up SUT.
[I] Creating batcher thread: 0 EnableBatcherThreadPerDevice: false
Finished setting up SUT.
Starting warmup. Running for a minimum of 5 seconds.
Finished warmup. Ran for 5.14435s.
Finished warmup. Ran for 5.14255s.
Starting running actual test.

No warnings encountered during test.
Expand All @@ -87,31 +87,31 @@ Device Device:1.GPU processed:
PerSampleCudaMemcpy Calls: 0
BatchedCudaMemcpy Calls: 6196
&&&& PASSED Default_Harness # ./build/bin/harness_default
[2024-12-29 01:50:46,997 run_harness.py:166 INFO] Result: Accuracy run detected.
[2024-12-29 01:50:46,997 __init__.py:46 INFO] Running command: python3 /home/cmuser/CM/repos/local/cache/94a57f78972843c6/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x2-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/cmuser/CM/repos/local/cache/4db00c74da1e44c8/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json
[2025-01-01 01:54:35,901 run_harness.py:166 INFO] Result: Accuracy run detected.
[2025-01-01 01:54:35,902 __init__.py:46 INFO] Running command: python3 /home/cmuser/CM/repos/local/cache/94a57f78972843c6/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x2-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/cmuser/CM/repos/local/cache/4db00c74da1e44c8/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json
loading annotations into memory...
Done (t=0.44s)
Done (t=0.52s)
creating index...
index created!
Loading and preparing results...
DONE (t=17.73s)
DONE (t=17.66s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=133.06s).
DONE (t=133.02s).
Accumulating evaluation results...
DONE (t=31.98s).
DONE (t=32.51s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.373
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.522
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.404
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.022
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.124
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.403
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.023
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.413
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.419
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.599
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.628
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.081
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.083
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.344
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677
mAP=37.328%
Expand Down
Loading

0 comments on commit a8ded8f

Please sign in to comment.