This notebook provides an introduction to data acquisition and basic insights using the Pandas library. It covers data loading, exploration, and statistical summaries.
- Data acquisition: Loading dataset from local or online sources using Pandas.
- Basic insights: Data types, statistical summaries, and dataset information.
- Python and Jupyter Notebook.
- Basic understanding of Python programming and data manipulation.
Automobile Dataset (CSV Format)
- Pandas: Data manipulation and analysis.
- NumPy: Numerical computations.
This notebook focuses on data wrangling tasks, which involve preparing and cleaning data for analysis.
- Identify & Handle missing values
- Identify & Deal with missing values
- Correct data format
- Standardizing & Normalizing data.
- Binning Numerical Variables.
- Indicator Variable (Dummy Variable).
- Lab-1 Introduction
- Familiarity with Pandas library.
Automobile Dataset (CSV Format)
- Pandas
- NumPy
- Matplotlib: Data visualization.