-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'upstream/master' into properties
- Loading branch information
Showing
15 changed files
with
396 additions
and
35 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
261 changes: 261 additions & 0 deletions
261
src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
// Copyright (C) 2023-2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include <cassert> | ||
#include <random> | ||
#include <fstream> | ||
#include <iterator> | ||
|
||
#include "image_generation/schedulers/euler_ancestral_discrete.hpp" | ||
#include "image_generation/numpy_utils.hpp" | ||
|
||
namespace ov { | ||
namespace genai { | ||
|
||
EulerAncestralDiscreteScheduler::Config::Config(const std::filesystem::path& scheduler_config_path) { | ||
std::ifstream file(scheduler_config_path); | ||
OPENVINO_ASSERT(file.is_open(), "Failed to open ", scheduler_config_path); | ||
|
||
nlohmann::json data = nlohmann::json::parse(file); | ||
using utils::read_json_param; | ||
|
||
read_json_param(data, "num_train_timesteps", num_train_timesteps); | ||
read_json_param(data, "beta_start", beta_start); | ||
read_json_param(data, "beta_end", beta_end); | ||
read_json_param(data, "beta_schedule", beta_schedule); | ||
read_json_param(data, "trained_betas", trained_betas); | ||
read_json_param(data, "steps_offset", steps_offset); | ||
read_json_param(data, "prediction_type", prediction_type); | ||
read_json_param(data, "timestep_spacing", timestep_spacing); | ||
read_json_param(data, "rescale_betas_zero_snr", rescale_betas_zero_snr); | ||
} | ||
|
||
EulerAncestralDiscreteScheduler::EulerAncestralDiscreteScheduler(const std::filesystem::path& scheduler_config_path) | ||
: EulerAncestralDiscreteScheduler(Config(scheduler_config_path)) { | ||
} | ||
|
||
EulerAncestralDiscreteScheduler::EulerAncestralDiscreteScheduler(const Config& scheduler_config): m_config(scheduler_config) { | ||
std::vector<float> alphas, betas; | ||
|
||
using numpy_utils::linspace; | ||
|
||
if (!m_config.trained_betas.empty()) { | ||
betas = m_config.trained_betas; | ||
} else if (m_config.beta_schedule == BetaSchedule::LINEAR) { | ||
betas = linspace<float>(m_config.beta_start, m_config.beta_end, m_config.num_train_timesteps); | ||
} else if (m_config.beta_schedule == BetaSchedule::SCALED_LINEAR) { | ||
float start = std::sqrt(m_config.beta_start); | ||
float end = std::sqrt(m_config.beta_end); | ||
betas = linspace<float>(start, end, m_config.num_train_timesteps); | ||
std::for_each(betas.begin(), betas.end(), [](float& x) { | ||
x *= x; | ||
}); | ||
// TODO: else if beta_schedule == "squaredcos_cap_v2" | ||
} else { | ||
OPENVINO_THROW( | ||
"'beta_schedule' must be one of 'LINEAR' or 'SCALED_LINEAR'. Please, add support of other types"); | ||
} | ||
|
||
if (m_config.rescale_betas_zero_snr) { | ||
using numpy_utils::rescale_zero_terminal_snr; | ||
rescale_zero_terminal_snr(betas); | ||
} | ||
|
||
std::transform(betas.begin(), betas.end(), std::back_inserter(alphas), [](float b) { | ||
return 1.0f - b; | ||
}); | ||
|
||
for (size_t i = 1; i <= alphas.size(); ++i) { | ||
float alpha_cumprod = | ||
std::accumulate(std::begin(alphas), std::begin(alphas) + i, 1.0, std::multiplies<float>{}); | ||
m_alphas_cumprod.push_back(alpha_cumprod); | ||
} | ||
|
||
if (m_config.rescale_betas_zero_snr) { | ||
m_alphas_cumprod.back() = std::pow(2, -24); | ||
} | ||
|
||
for (auto it = m_alphas_cumprod.rbegin(); it != m_alphas_cumprod.rend(); ++it) { | ||
float sigma = std::pow(((1 - (*it)) / (*it)), 0.5); | ||
m_sigmas.push_back(sigma); | ||
} | ||
m_sigmas.push_back(0); | ||
|
||
// setable values | ||
auto linspaced = | ||
linspace<float>(0.0f, static_cast<float>(m_config.num_train_timesteps - 1), m_config.num_train_timesteps, true); | ||
for (auto it = linspaced.rbegin(); it != linspaced.rend(); ++it) { | ||
m_timesteps.push_back(static_cast<int64_t>(std::round(*it))); | ||
} | ||
m_num_inference_steps = -1; | ||
m_step_index = -1; | ||
m_begin_index = -1; | ||
m_is_scale_input_called = false; | ||
} | ||
|
||
void EulerAncestralDiscreteScheduler::set_timesteps(size_t num_inference_steps, float strength) { | ||
m_timesteps.clear(); | ||
m_sigmas.clear(); | ||
m_step_index = m_begin_index = -1; | ||
m_num_inference_steps = num_inference_steps; | ||
std::vector<float> sigmas; | ||
|
||
switch (m_config.timestep_spacing) { | ||
case TimestepSpacing::LINSPACE: { | ||
using numpy_utils::linspace; | ||
float end = static_cast<float>(m_config.num_train_timesteps - 1); | ||
auto linspaced = linspace<float>(0.0f, end, num_inference_steps, true); | ||
for (auto it = linspaced.rbegin(); it != linspaced.rend(); ++it) { | ||
m_timesteps.push_back(static_cast<int64_t>(std::round(*it))); | ||
} | ||
break; | ||
} | ||
case TimestepSpacing::LEADING: { | ||
size_t step_ratio = m_config.num_train_timesteps / m_num_inference_steps; | ||
for (size_t i = num_inference_steps - 1; i != -1; --i) { | ||
m_timesteps.push_back(i * step_ratio + m_config.steps_offset); | ||
} | ||
break; | ||
} | ||
case TimestepSpacing::TRAILING: { | ||
float step_ratio = static_cast<float>(m_config.num_train_timesteps) / static_cast<float>(m_num_inference_steps); | ||
for (float i = m_config.num_train_timesteps; i > 0; i -= step_ratio) { | ||
m_timesteps.push_back(static_cast<int64_t>(std::round(i)) - 1); | ||
} | ||
break; | ||
} | ||
default: | ||
OPENVINO_THROW("Unsupported value for 'timestep_spacing'"); | ||
} | ||
|
||
for (const float& i : m_alphas_cumprod) { | ||
float sigma = std::pow(((1 - i) / i), 0.5); | ||
sigmas.push_back(sigma); | ||
} | ||
|
||
using numpy_utils::interp; | ||
std::vector<size_t> x_data_points(sigmas.size()); | ||
std::iota(x_data_points.begin(), x_data_points.end(), 0); | ||
m_sigmas = interp(m_timesteps, x_data_points, sigmas); | ||
m_sigmas.push_back(0.0f); | ||
|
||
// apply 'strength' used in image generation | ||
// in diffusers, it's https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py#L650 | ||
{ | ||
size_t init_timestep = std::min<size_t>(num_inference_steps * strength, num_inference_steps); | ||
size_t t_start = std::max<size_t>(num_inference_steps - init_timestep, 0); | ||
// keep original timesteps | ||
m_schedule_timesteps = m_timesteps; | ||
// while return patched ones by 'strength' parameter | ||
m_timesteps = std::vector<int64_t>(m_timesteps.begin() + t_start, m_timesteps.end()); | ||
m_begin_index = t_start; | ||
} | ||
} | ||
|
||
std::map<std::string, ov::Tensor> EulerAncestralDiscreteScheduler::step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr<Generator> generator) { | ||
// noise_pred - model_output | ||
// latents - sample | ||
// inference_step | ||
|
||
size_t timestep = m_timesteps[inference_step]; | ||
|
||
if (m_step_index == -1) | ||
m_step_index = m_begin_index; | ||
|
||
float sigma = m_sigmas[m_step_index]; | ||
|
||
float* model_output_data = noise_pred.data<float>(); | ||
float* sample_data = latents.data<float>(); | ||
|
||
ov::Tensor pred_original_sample(noise_pred.get_element_type(), noise_pred.get_shape()); | ||
float* pred_original_sample_data = pred_original_sample.data<float>(); | ||
|
||
switch (m_config.prediction_type) { | ||
case PredictionType::EPSILON: | ||
for (size_t i = 0; i < noise_pred.get_size(); ++i) { | ||
pred_original_sample_data[i] = sample_data[i] - sigma * model_output_data[i]; | ||
} | ||
break; | ||
case PredictionType::V_PREDICTION: | ||
for (size_t i = 0; i < noise_pred.get_size(); ++i) { | ||
pred_original_sample_data[i] = model_output_data[i] * (-sigma / std::pow((std::pow(sigma, 2) + 1), 0.5)) + | ||
(sample_data[i] / (std::pow(sigma, 2) + 1)); | ||
} | ||
break; | ||
default: | ||
OPENVINO_THROW("Unsupported value for 'PredictionType': must be one of `epsilon`, or `v_prediction`"); | ||
} | ||
|
||
float sigma_from = m_sigmas[m_step_index]; | ||
float sigma_to = m_sigmas[m_step_index + 1]; | ||
float sigma_up = std::sqrt(std::pow(sigma_to, 2) * (std::pow(sigma_from, 2) - std::pow(sigma_to, 2)) / std::pow(sigma_from, 2)); | ||
float sigma_down = std::sqrt(std::pow(sigma_to, 2) - std::pow(sigma_up, 2)); | ||
float dt = sigma_down - sigma; | ||
|
||
ov::Tensor prev_sample = ov::Tensor(latents.get_element_type(), latents.get_shape()); | ||
float* prev_sample_data = prev_sample.data<float>(); | ||
|
||
ov::Tensor noise = generator->randn_tensor(noise_pred.get_shape()); | ||
const float* noise_data = noise.data<float>(); | ||
|
||
for (size_t i = 0; i < prev_sample.get_size(); ++i) { | ||
float derivative = (sample_data[i] - pred_original_sample_data[i]) / sigma; | ||
prev_sample_data[i] = (sample_data[i] + derivative * dt) + noise_data[i] * sigma_up; | ||
} | ||
|
||
m_step_index++; | ||
|
||
return {{"latent", prev_sample}, {"denoised", pred_original_sample}}; | ||
} | ||
|
||
size_t EulerAncestralDiscreteScheduler::_index_for_timestep(int64_t timestep) const{ | ||
for (size_t i = 0; i < m_schedule_timesteps.size(); ++i) { | ||
if (timestep == m_schedule_timesteps[i]) { | ||
return i; | ||
} | ||
} | ||
|
||
OPENVINO_THROW("Failed to find index for timestep ", timestep); | ||
} | ||
|
||
void EulerAncestralDiscreteScheduler::add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const { | ||
size_t index_for_timestep = _index_for_timestep(latent_timestep); | ||
const float sigma = m_sigmas[index_for_timestep]; | ||
|
||
float * init_latent_data = init_latent.data<float>(); | ||
const float * noise_data = noise.data<float>(); | ||
|
||
for (size_t i = 0; i < init_latent.get_size(); ++i) { | ||
init_latent_data[i] = init_latent_data[i] + sigma * noise_data[i]; | ||
} | ||
} | ||
|
||
std::vector<int64_t> EulerAncestralDiscreteScheduler::get_timesteps() const { | ||
return m_timesteps; | ||
} | ||
|
||
void EulerAncestralDiscreteScheduler::scale_model_input(ov::Tensor sample, size_t inference_step) { | ||
if (m_step_index == -1) | ||
m_step_index = m_begin_index; | ||
|
||
float sigma = m_sigmas[m_step_index]; | ||
float* sample_data = sample.data<float>(); | ||
for (size_t i = 0; i < sample.get_size(); i++) { | ||
sample_data[i] /= std::pow((std::pow(sigma, 2) + 1), 0.5); | ||
} | ||
m_is_scale_input_called = true; | ||
} | ||
|
||
float EulerAncestralDiscreteScheduler::get_init_noise_sigma() const { | ||
float max_sigma = *std::max_element(m_sigmas.begin(), m_sigmas.end()); | ||
|
||
if (m_config.timestep_spacing == TimestepSpacing::LINSPACE || | ||
m_config.timestep_spacing == TimestepSpacing::TRAILING) { | ||
return max_sigma; | ||
} | ||
|
||
return std::sqrt(std::pow(max_sigma, 2) + 1); | ||
} | ||
|
||
} // namespace genai | ||
} // namespace ov |
61 changes: 61 additions & 0 deletions
61
src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.hpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
// Copyright (C) 2023-2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#pragma once | ||
|
||
#include <filesystem> | ||
#include <list> | ||
#include <string> | ||
|
||
#include "image_generation/schedulers/types.hpp" | ||
#include "image_generation/schedulers/ischeduler.hpp" | ||
|
||
namespace ov { | ||
namespace genai { | ||
|
||
class EulerAncestralDiscreteScheduler : public IScheduler { | ||
public: | ||
struct Config { | ||
int32_t num_train_timesteps = 1000; | ||
float beta_start = 0.0001f, beta_end = 0.02f; | ||
BetaSchedule beta_schedule = BetaSchedule::LINEAR; | ||
std::vector<float> trained_betas = {}; | ||
size_t steps_offset = 0; | ||
PredictionType prediction_type = PredictionType::EPSILON; | ||
TimestepSpacing timestep_spacing = TimestepSpacing::LEADING; | ||
bool rescale_betas_zero_snr = false; | ||
|
||
Config() = default; | ||
explicit Config(const std::filesystem::path& scheduler_config_path); | ||
}; | ||
|
||
explicit EulerAncestralDiscreteScheduler(const std::filesystem::path& scheduler_config_path); | ||
explicit EulerAncestralDiscreteScheduler(const Config& scheduler_config); | ||
|
||
void set_timesteps(size_t num_inference_steps, float strength) override; | ||
|
||
std::vector<std::int64_t> get_timesteps() const override; | ||
|
||
float get_init_noise_sigma() const override; | ||
|
||
void scale_model_input(ov::Tensor sample, size_t inference_step) override; | ||
|
||
std::map<std::string, ov::Tensor> step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr<Generator> generator) override; | ||
|
||
void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const override; | ||
|
||
private: | ||
Config m_config; | ||
|
||
std::vector<float> m_alphas_cumprod, m_sigmas; | ||
std::vector<int64_t> m_timesteps, m_schedule_timesteps; | ||
size_t m_num_inference_steps; | ||
|
||
int m_step_index, m_begin_index; | ||
bool m_is_scale_input_called; | ||
|
||
size_t _index_for_timestep(int64_t timestep) const; | ||
}; | ||
|
||
} // namespace genai | ||
} // namespace ov |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.