-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
13 changed files
with
899 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
25 changes: 25 additions & 0 deletions
25
samples/cpp/continuous_batching_prompt_lookup/CMakeLists.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# start of dependencies | ||
|
||
include(FetchContent) | ||
|
||
FetchContent_Declare(cxxopts | ||
URL https://github.com/jarro2783/cxxopts/archive/refs/tags/v3.1.1.tar.gz | ||
URL_HASH SHA256=523175f792eb0ff04f9e653c90746c12655f10cb70f1d5e6d6d9491420298a08) | ||
|
||
FetchContent_Declare(nlohmann_json | ||
URL https://github.com/nlohmann/json/archive/refs/tags/v3.11.3.tar.gz | ||
URL_HASH SHA256=0d8ef5af7f9794e3263480193c491549b2ba6cc74bb018906202ada498a79406) | ||
|
||
FetchContent_MakeAvailable(cxxopts) | ||
FetchContent_MakeAvailable(nlohmann_json) | ||
|
||
find_package(OpenVINO REQUIRED COMPONENTS Runtime) | ||
|
||
# end of dependencies | ||
|
||
set(TARGET_NAME continuous_batching_prompt_lookup) | ||
add_executable(${TARGET_NAME} ${TARGET_NAME}.cpp "prompt_lookup_pipeline.hpp" "prompt_lookup_pipeline.cpp") | ||
target_link_libraries(${TARGET_NAME} PRIVATE openvino::genai cxxopts::cxxopts) |
138 changes: 138 additions & 0 deletions
138
samples/cpp/continuous_batching_prompt_lookup/continuous_batching_prompt_lookup.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
// Copyright (C) 2023-2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include <openvino/openvino.hpp> | ||
#include <cxxopts.hpp> | ||
|
||
#include "openvino/genai/generation_config.hpp" | ||
|
||
#include "prompt_lookup_pipeline.hpp" | ||
|
||
void print_generation_result(const ov::genai::GenerationResult& generation_result) { | ||
for (size_t output_id = 0; output_id < generation_result.m_generation_ids.size(); ++output_id) { | ||
std::cout << "Answer " << output_id << " (" << generation_result.m_scores[output_id] << ") : " << generation_result.m_generation_ids[output_id] << std::endl; | ||
} | ||
} | ||
|
||
int main(int argc, char* argv[]) try { | ||
// Command line options | ||
|
||
cxxopts::Options options("accuracy_sample", "Help command"); | ||
|
||
options.add_options() | ||
("n,num_prompts", "A number of prompts", cxxopts::value<size_t>()->default_value("1")) | ||
("dynamic_split_fuse", "Whether to use dynamic split-fuse or vLLM scheduling", cxxopts::value<bool>()->default_value("false")) | ||
("m,model", "Path to model and tokenizers base directory", cxxopts::value<std::string>()->default_value(".")) | ||
("k,candidates_number", "candidates_number", cxxopts::value<size_t>()->default_value("5")) | ||
("ngram", "Ngram", cxxopts::value<size_t>()->default_value("5")) | ||
("g,generated_len", "generated_len", cxxopts::value<size_t>()->default_value("30")) | ||
("h,help", "Print usage"); | ||
|
||
cxxopts::ParseResult result; | ||
try { | ||
result = options.parse(argc, argv); | ||
} catch (const cxxopts::exceptions::exception& e) { | ||
std::cout << e.what() << "\n\n"; | ||
std::cout << options.help() << std::endl; | ||
return EXIT_FAILURE; | ||
} | ||
|
||
if (result.count("help")) { | ||
std::cout << options.help() << std::endl; | ||
return EXIT_SUCCESS; | ||
} | ||
|
||
const size_t num_prompts = result["num_prompts"].as<size_t>(); | ||
const bool dynamic_split_fuse = result["dynamic_split_fuse"].as<bool>(); | ||
const std::string models_path = result["model"].as<std::string>(); | ||
const size_t k = result["candidates_number"].as<size_t>(); | ||
const size_t g = result["generated_len"].as<size_t>(); | ||
const size_t n = result["ngram"].as<size_t>(); | ||
|
||
// create dataset | ||
|
||
std::vector<std::string> prompt_examples = { | ||
// "What is OpenVINO?", | ||
// "How are you?", | ||
"code: ```for (const auto& a : b) { std::cout << a << std::endl; }```", | ||
"Tell me something about Canada", | ||
"What is OpenVINO?", | ||
}; | ||
|
||
auto greedy = ov::genai::greedy(); | ||
greedy.max_new_tokens = g; | ||
|
||
std::vector<ov::genai::GenerationConfig> sampling_params_examples { | ||
// ov::genai::beam_search(), | ||
greedy, | ||
// ov::genai::multinomial(), | ||
}; | ||
|
||
std::vector<std::string> prompts(num_prompts); | ||
std::vector<ov::genai::GenerationConfig> sampling_params(num_prompts); | ||
|
||
for (size_t request_id = 0; request_id < num_prompts; ++request_id) { | ||
prompts[request_id] = prompt_examples[request_id % prompt_examples.size()]; | ||
sampling_params[request_id] = sampling_params_examples[request_id % sampling_params_examples.size()]; | ||
} | ||
|
||
// Perform the inference | ||
|
||
ov::genai::SchedulerConfig scheduler_config; | ||
// batch size | ||
scheduler_config.max_num_batched_tokens = 256; | ||
// cache params | ||
scheduler_config.num_kv_blocks = 364; | ||
scheduler_config.block_size = 32; | ||
// mode - vLLM or dynamic_split_fuse | ||
scheduler_config.dynamic_split_fuse = dynamic_split_fuse; | ||
// vLLM specific params | ||
scheduler_config.max_num_seqs = 2; | ||
|
||
// It's possible to construct a Tokenizer from a different path. | ||
// If the Tokenizer isn't specified, it's loaded from the same folder. | ||
PromptLookupPipeline pipe(models_path, k, n, ov::genai::Tokenizer{models_path}, scheduler_config, "CPU"); | ||
auto start_time = std::chrono::system_clock::now(); | ||
std::vector<ov::genai::GenerationResult> generation_results = pipe.generate(prompts, sampling_params); | ||
|
||
for (size_t request_id = 0; request_id < generation_results.size(); ++request_id) { | ||
const ov::genai::GenerationResult & generation_result = generation_results[request_id]; | ||
std::cout << "Question: " << prompts[request_id] << std::endl; | ||
switch (generation_result.m_status) | ||
{ | ||
case ov::genai::GenerationStatus::FINISHED: | ||
print_generation_result(generation_result); | ||
break; | ||
case ov::genai::GenerationStatus::IGNORED: | ||
std::cout << "Request was ignored due to lack of memory." <<std::endl; | ||
if (generation_result.m_generation_ids.size() > 0) { | ||
std::cout << "Partial result:" << std::endl; | ||
print_generation_result(generation_result); | ||
} | ||
break; | ||
case ov::genai::GenerationStatus::DROPPED_BY_PIPELINE: | ||
std::cout << "Request was aborted." <<std::endl; | ||
if (generation_result.m_generation_ids.size() > 0) { | ||
std::cout << "Partial result:" << std::endl; | ||
print_generation_result(generation_result); | ||
} | ||
break; | ||
default: | ||
break; | ||
} | ||
std::cout << std::endl; | ||
} | ||
auto end_time = std::chrono::system_clock::now(); | ||
std::chrono::duration<double> duration = end_time - start_time; | ||
std::cout << std::endl; | ||
std::cout << "Duration: " << duration.count() << std::endl; | ||
std::cout << "Infer number: " << pipe.infer_cnt << std::endl; | ||
std::cout << "MAX matches number: " << pipe.max_matches << std::endl; | ||
std::cout << "AVG matches number: " << (float(pipe.avg_matches) / pipe.infer_cnt) << std::endl; | ||
} catch (const std::exception& error) { | ||
std::cerr << error.what() << '\n'; | ||
return EXIT_FAILURE; | ||
} catch (...) { | ||
std::cerr << "Non-exception object thrown\n"; | ||
return EXIT_FAILURE; | ||
} |
189 changes: 189 additions & 0 deletions
189
samples/cpp/continuous_batching_prompt_lookup/prompt_lookup_pipeline.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
// Copyright (C) 2023-2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include "prompt_lookup_pipeline.hpp" | ||
|
||
PromptLookupPipeline::PromptLookupPipeline(const std::string& models_path, | ||
size_t candidates_number, | ||
size_t ngram_size, | ||
const ov::genai::SchedulerConfig& scheduler_config, | ||
const std::string& device, | ||
const ov::AnyMap& plugin_config) { | ||
ov::genai::Tokenizer tokenizer(models_path); | ||
PromptLookupPipeline(models_path, candidates_number, max_ngram_size, tokenizer, scheduler_config, device, plugin_config); | ||
}; | ||
|
||
PromptLookupPipeline::PromptLookupPipeline(const std::string& models_path, | ||
size_t candidates_number, | ||
size_t ngram_size, | ||
const ov::genai::Tokenizer& tokenizer, | ||
const ov::genai::SchedulerConfig& scheduler_config, | ||
const std::string& device, | ||
const ov::AnyMap& plugin_config) { | ||
m_tokenizer = tokenizer; | ||
set_k(candidates_number); | ||
max_ngram_size = ngram_size; | ||
|
||
model_pipeline = ov::genai::ContinuousBatchingPipeline(models_path, m_tokenizer, scheduler_config, device, plugin_config); | ||
model_pipeline.enable_validation_mode(); | ||
} | ||
|
||
ov::genai::PipelineMetrics PromptLookupPipeline::get_metrics() const { | ||
return model_pipeline.get_metrics(); | ||
} | ||
|
||
void PromptLookupPipeline::step() { | ||
std::cout << "=======STEP==================" << std::endl; | ||
bool is_updated = false; | ||
if (is_speculative_mode) { | ||
// predict tokens using prompt | ||
std::cout << "num_candidates: " << candidates_number << std::endl; | ||
for (const auto& whole_input : model_pipeline.get_prompts_with_generated_tokens()) { | ||
auto updated_input = whole_input; | ||
const auto& input_ids = whole_input.token_ids; | ||
const size_t input_length = input_ids.size(); | ||
for (int32_t ngram_size = max_ngram_size; ngram_size > 0; ngram_size--) { | ||
std::vector<int64_t> ngram = std::vector<int64_t>{input_ids.cend() - ngram_size, input_ids.cend()}; | ||
std::cout << "ngram: " << std::endl; | ||
for (const auto& a : ngram) { | ||
std::cout << a; | ||
} | ||
std::cout << std::endl; | ||
|
||
// find ngram match in input_ids | ||
size_t ngram_i = 0; | ||
for (size_t input_i = 0; input_i < input_length - ngram_size; input_i++) { | ||
if (ngram[ngram_i] != input_ids[input_i]) { | ||
ngram_i = 0; | ||
continue; | ||
} | ||
ngram_i++; | ||
|
||
if (ngram_i < ngram_size) { | ||
continue; | ||
} | ||
|
||
// match found with the end at input_i | ||
size_t avaliable_num_pred = std::min(input_length - (input_i + 1), candidates_number); | ||
|
||
// return candidates with length of avaliable_num_pred | ||
std::vector<int64_t> candidate{input_ids.cbegin() + input_i + 1, | ||
input_ids.cbegin() + input_i + 1 + avaliable_num_pred}; | ||
updated_input.token_ids = candidate; | ||
updated_input.log_probs = std::vector<float>(candidate.size(), 0); | ||
|
||
model_pipeline.update_generated_sequence(updated_input); | ||
break; | ||
} | ||
if (whole_input.token_ids != updated_input.token_ids) { | ||
is_updated = true; | ||
break; | ||
} | ||
} | ||
} | ||
|
||
// put candidates to model cache | ||
auto candidate_sequences = model_pipeline.get_generated_sequences(); | ||
// todo: remove debug code | ||
for (const auto& s : candidate_sequences) { | ||
std::cout << "ASSISTANT: "; | ||
for (const auto& d : s.token_ids) { | ||
std::cout << d << " "; | ||
} | ||
// std::cout << std::endl; | ||
// for (const auto& d : s.log_probs) { | ||
// std::cout << d << " "; | ||
// } | ||
std::cout << std::endl; | ||
std::cout << decode(s.token_ids) << std::endl; | ||
} | ||
} | ||
|
||
const auto gen_seq_before = model_pipeline.get_generated_sequences(); | ||
|
||
// validate candidates and generate 1 new token | ||
model_pipeline.step(); | ||
|
||
if (is_speculative_mode && is_updated) { | ||
// todo: remove debug code | ||
for (const auto& s : model_pipeline.get_generated_sequences()) { | ||
std::cout << "MODEL: "; | ||
for (const auto& d : s.token_ids) { | ||
std::cout << d << " "; | ||
} | ||
// std::cout << std::endl; | ||
// for (const auto& d : s.log_probs) { | ||
// std::cout << d << " "; | ||
// } | ||
std::cout << std::endl; | ||
std::cout << decode(s.token_ids) << std::endl; | ||
std::cout << std::endl; | ||
} | ||
|
||
// todo: iefode: remove debug prints | ||
for (const auto& gen_seq_after : model_pipeline.get_generated_sequences()) { | ||
const auto& candidate_seq = gen_seq_before[gen_seq_after.request_id]; | ||
size_t before_len = candidate_seq.token_ids.size(), | ||
after_len = gen_seq_after.token_ids.size(); | ||
size_t dist = is_updated ? (after_len <= before_len ? (before_len - after_len) : candidates_number) : 0; | ||
update_strategy(dist); | ||
} | ||
// ov::genai::ContinuousBatchingPipeline::UpdateSeqResult update_result; | ||
// for (const auto& checked_sequence : checked_sequences) { | ||
// update_result = assisting_pipeline.update_generated_sequence(checked_sequence); | ||
// } | ||
|
||
// OPENVINO_ASSERT(candidates_number >= update_result.to_remove); | ||
// if (update_result.to_remove) { | ||
// std::cout << "to_remove: " << update_result.to_remove << std::endl; | ||
// } | ||
// update_strategy(candidates_number - update_result.to_remove); | ||
// std::cout << "=========================" << std::endl; | ||
} | ||
} | ||
|
||
void PromptLookupPipeline::update_strategy(size_t num_matches) { | ||
std::cout << "num_matches: " << num_matches << std::endl; | ||
max_matches = std::max(max_matches, num_matches); | ||
avg_matches += num_matches; | ||
if (max_candidates_number == 0) { | ||
return; | ||
} | ||
if (num_matches == candidates_number) { | ||
candidates_number = std::min(candidates_number + 2, max_candidates_number); | ||
} else { | ||
candidates_number = std::max(int64_t(candidates_number) - 1, int64_t(1)); | ||
} | ||
} | ||
|
||
|
||
void PromptLookupPipeline::set_k(size_t new_default_k) { | ||
candidates_number = new_default_k; | ||
max_candidates_number = new_default_k * 2; | ||
is_speculative_mode = candidates_number > 0; | ||
} | ||
|
||
bool PromptLookupPipeline::has_non_finished_requests() { | ||
return model_pipeline.has_non_finished_requests(); | ||
} | ||
|
||
|
||
std::vector<ov::genai::GenerationHandle> | ||
PromptLookupPipeline::generate_sequences( | ||
const std::vector<ov::Tensor> prompts, | ||
std::vector<ov::genai::GenerationConfig> sampling_params) { | ||
OPENVINO_ASSERT(!has_non_finished_requests(), "Generate cannot be called while ContinuousBatchingPipeline is already in running state. Use ContinuousBatchingPipeline::add_request"); | ||
OPENVINO_ASSERT(prompts.size() == sampling_params.size()); | ||
|
||
std::vector<ov::genai::GenerationHandle> generations, assisting_generations; | ||
for (size_t request_id = 0; request_id < prompts.size(); ++request_id) { | ||
generations.push_back(model_pipeline.add_request(request_id, prompts[request_id], sampling_params[request_id])); | ||
} | ||
|
||
while (has_non_finished_requests()) { | ||
step(); | ||
infer_cnt++; | ||
} | ||
|
||
return generations; | ||
} |
Oops, something went wrong.