-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of https://github.com/pat-alt/endogenous-macrodyn…
- Loading branch information
Showing
8 changed files
with
250 additions
and
7,772 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,3 @@ | ||
# Concluding Remarks {#conclusion} | ||
|
||
This work has revisited and extended some of the most general and defining concepts underlying the literature on Counterfactual Explanations and, in particular, Algorithmic Recourse. We demonstrate that long-held beliefs as to what defines optimality in AR, may not be suitable in contexts that involves large groups of individuals facing adverse outcomes. Specifically, we run experiments that simulate the application of recourse in practice using various state-of-the-art counterfactual generators and find that all of them induce substantial domain and model shifts. We argue that these shifts should be considered as an expected external cost of individual recourse and call for a paradigm shift from individual to collective recourse in these types of situations. By proposing an adapted counterfactual search objective that incorporates this cost, we make that paradigm shift explicit. We show that this modified objective lends itself to mitigation strategies that can be used to effectively decrease the magnitude of induced domain and model shifts. Through our work we hope to inspire future research on this important topic. To this end we have open-sourced all of our code along with a Julia package: [`AlgorithmicRecourseDynamics.jl`](https://anonymous.4open.science/r/AlgorithmicRecourseDynamics/README.md). The package is built on top of [`CounterfactualExplanations.jl`](https://github.com/pat-alt/CounterfactualExplanations.jl) and inherits its extensibility [@altmeyer2022counterfactualexplanations]. That is to say that future researchers should find it relatively easy to replicate, modify and extend the simulation experiments presented here and apply to their own custom counterfactual generators. | ||
This work has revisited and extended some of the most general and defining concepts underlying the literature on Counterfactual Explanations and, in particular, Algorithmic Recourse. We demonstrate that long-held beliefs as to what defines optimality in AR, may not always be suitable. Specifically, we run experiments that simulate the application of recourse in practice using various state-of-the-art counterfactual generators and find that all of them induce substantial domain and model shifts. We argue that these shifts should be considered as an expected external cost of individual recourse and call for a paradigm shift from individual to collective recourse in these types of situations. By proposing an adapted counterfactual search objective that incorporates this cost, we make that paradigm shift explicit. We show that this modified objective lends itself to mitigation strategies that can be used to effectively decrease the magnitude of induced domain and model shifts. Through our work we hope to inspire future research on this important topic. To this end we have open-sourced all of our code along with a Julia package: [`AlgorithmicRecourseDynamics.jl`](https://anonymous.4open.science/r/AlgorithmicRecourseDynamics/README.md). Future researchers should find it relatively easy to replicate, modify and extend the simulation experiments presented here and apply to their own custom counterfactual generators. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters