Makes it easy to get data from Human Mortality Database (HMD) into Julia!
The package can be installed directly using the repo's URL
julia> using Pkg
julia> Pkg.add("https://github.com/patrickm663/HMD.jl")
If you want to tinker more with the internals, clone the repo, enter and activate!
git clone git@github.com:patrickm663/HMD.jl
cd HMD.jl/
julia
julia> using Pkg
julia> Pkg.activate(".")
Once in, load HMD
julia> using HMD
julia> df = read_HMD("AUS", "Mx", "1x1", "username", "password"; verbose=true);
Checking inputs are valid...
Attempting initial connection...
Attempting to login...
Data successfully retrieved...
Data processing in progress...
Success!
julia> df
11100×5 DataFrame
Row │ Year Age Female Male Total
│ Int64 Int64 Float64 Float64 Float64
───────┼────────────────────────────────────────────
1 │ 1921 0 0.059987 0.076533 0.068444
2 │ 1921 1 0.012064 0.014339 0.013225
3 │ 1921 2 0.005779 0.006047 0.005916
4 │ 1921 3 0.002889 0.004197 0.003554
5 │ 1921 4 0.003254 0.003254 0.003254
...
It also supports long-form names:
julia> using HMD
julia> df = read_HMD("Australia", "Death Rates", "1x1", "username", "password"; verbose=true);
Checking inputs are valid...
Attempting initial connection...
Attempting to login...
Data successfully retrieved...
Data processing in progress...
Success!
julia> df
11100×5 DataFrame
Row │ Year Age Female Male Total
│ Int64 Int64 Float64 Float64 Float64
───────┼────────────────────────────────────────────
1 │ 1921 0 0.059987 0.076533 0.068444
2 │ 1921 1 0.012064 0.014339 0.013225
3 │ 1921 2 0.005779 0.006047 0.005916
4 │ 1921 3 0.002889 0.004197 0.003554
5 │ 1921 4 0.003254 0.003254 0.003254
...
Data can then be transformed into matrix-form where ages are rows and years are columns using the transform()
function:
julia> transform(df, :Total)
111×101 DataFrame
Row │ Age 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1 ⋯
│ Int64 Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? F ⋯
─────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
1 │ 0 0.068444 0.054918 0.062651 0.059428 0.055844 0.055631 0.056832 0.055516 0.052446 0.049286 0.042248 0.041085 0.040938 0.044885 0.041387 0.043345 0.039753 0.03947 0.039651 0.040198 0.04221 0.040777 0 ⋯
2 │ 1 0.013225 0.009842 0.011239 0.011047 0.009261 0.009759 0.010144 0.010582 0.009549 0.009369 0.006914 0.007134 0.00695 0.007495 0.006837 0.006828 0.005991 0.005777 0.005938 0.005709 0.005613 0.006035 0
3 │ 2 0.005916 0.004277 0.004675 0.004196 0.003659 0.004115 0.004131 0.004591 0.004561 0.004083 0.003713 0.003598 0.003528 0.003621 0.003737 0.003536 0.003264 0.003433 0.002983 0.002843 0.002933 0.002868 0
4 │ 3 0.003554 0.003078 0.002965 0.003141 0.002617 0.002888 0.003409 0.003103 0.003395 0.002715 0.002634 0.002629 0.002501 0.002951 0.002487 0.002531 0.002162 0.002383 0.002244 0.00196 0.002208 0.002113 0
5 │ 4 0.003254 0.00229 0.002383 0.002481 0.002333 0.002075 0.002325 0.001934 0.002351 0.002009 0.001789 0.002132 0.002086 0.002197 0.001869 0.002205 0.001838 0.001952 0.002041 0.001633 0.001815 0.001886 0 ⋯
...
Additionally, locally saved .txt
file from HMD can be loaded and processed - with the option to save as a CSV:
julia> using HMD
julia> df = read_HMD("test/data/Aus_Births.txt")
161×4 DataFrame
Row │ Year Female Male Total
│ Int64 Int64 Int64 Int64
─────┼───────────────────────────────
1 │ 1860 23262 24464 47726
2 │ 1861 23806 25102 48908
3 │ 1862 24896 26483 51379
4 │ 1863 25134 26233 51367
5 │ 1864 26838 28608 55446
...
The R package HMDHFDplus was a big help to figure out how to parse user-input correctly.
My TODO over the next while is:
- Figure out why docstrings aren't showing in the documentation
- Maybe refactor
src/
to make it more modular - Complete the README
- Add tests
- Better error handling
- Compile docs and run tests using Actions
- Check for valid country x table x group combos
- Add function to transform long-form
DataFrames
into$age \times year$ DataFrames
- Think about how to handle 'secret' credentials (testing and general use)
- Make it compatible with MortalityTables.jl
MIT licensed.