Metabolomics software for the automated development of MRM methods for QqQ instruments from HRMS MS/MS data
Package has been tested with Python 3.7 on Windows 10
Package has the following dependencies:
numpy (v1.18.1)
sklearn (v0.22.1)
pandas (v1.0.1)
DecoID (v0.2.8)
matplotlib (v3.1.3)
In order to process vendor formatted data without manual conversion, MS-Convert (http://proteowizard.sourceforge.net/tools.shtml) needs to be installed and added to PATH.
pip install srm_helper
PyPI:
https://pypi.org/project/srm_helper/
git clone https://github.com/e-stan/HRMS_2_QQQ.git
pip install HRMS_2_QQQ/src/.
Demo data available under HRMS_2_QQQ/examples/
Example usage to build a conversion between two instruments and apply to list of targets:
from srm_helper import *
import pandas as pd
if __name__ == "__main__":
#params
tol = .5 #MS2 fragment tolerance for QqQ optimized transitions
ppmTol = 10 #m/z tolerance for HRMS data in ppm
numCores = 2 #number of CPU cores to use
#create srm_maker object
srm_maker = SRM_maker(ppm=ppmTol,numCores=numCores)
#set datafiles for learning conversion
trainingData = pd.read_csv("target_transitions_to_learn_conv.csv")
msFilenames = ["training.mzML"]
#build conversion
merged = srm_maker.buildConversion(msFilenames,trainingData,tic_cutoff=0,frag_cutoff=0,frag_ppm_tolerance=2 * 1e6 * .5/200)
merged.to_csv("conversion_results.csv")
#output conversion
print(srm_maker.getConversionEquationString())
#set datafiles to build srms
targets = pd.read_csv("targets.csv")
#filename for HRMS MS/MS of targets
msFilename = "targets.mzML"
#create SRM table
srm_table,breakdownCurves = srm_maker.createSRMsCE(msFilename,targets)
#output SRM file
srm_table.to_csv("generated_SRM_table.csv")
#plot breakdown curves
plotBreakdownCurves(breakdownCurves,"breakdown_curves.pdf")
expected output files are included in the examples directory