Skip to content

qbxlvnf11/CMU-Panoptic-dataset-annotation-builder

Repository files navigation

CMU Panoptic Dataset

- Details of CMU Panoptic dataset

  • Capture the 3D motion of a group of people engaged in a social interaction
  • The studio structure

  • Massively multiview system

    • Hardware-based synchronized 480 VGA cameras views
      • 640 x 480 resolution, 25 fps
    • Hardware-based synchronized 31 HD cameras views
      • 1920 x 1080 resolution, 30 fps
    • Camera calibration
    • 10 RGB-D sensors (10 Kinect Ⅱ Sensors)
      • 1920 x 1080 (RGB), 512 x 424 (depth), 30 fps
      • Synchronized with HD cameras
  • Multiple people

    • 3D body pose
    • 3D facial landmarks
  • Data list examples

    • VoxelPose: 160422_ultimatum1, 160224_haggling1, 160226_haggling1 etc.

- CMU Panoptic dataset structure

|-- 160224_haggling1
            |   |-- hdImgs
            |   |-- hdvideos
            |   |-- hdPose3d_stage1_coco19
            |   |-- calibration_160224_haggling1.json
|-- 160226_haggling1  
            |-- ...

Generated Annotations

- Generating annotation json files and visualized images

- Annotation structures

|-- 160224_haggling1
            |   |-- calibration_160422_haggling1.json
            |   |-- 00_01
            |   |   |   |-- annotations
            |   |   |   |   |   |-- 00_03_00000206_gt.json
            |   |   |   |   |   |-- ...
            |   |   |   |-- origin_images
            |   |   |   |   |   |-- 00_03_00000206.jpg
            |   |   |   |   |   |-- ...
            |   |   |   |-- vis_images
            |   |   |   |   |   |-- 00_03_00000206_vis.jpg
            |   |   |   |   |   |-- ...
            |   |-- 00_02
            |   |-- ...
|-- 160226_haggling1  
            |-- ...

- Annotation json file format

{"bodies": [
  { "view_id": view id (HD camera id),
  "id": person id,
  "num_person": number of the people,
  "input_width": image width (1920),
  "input_height": image height (1080),
  "transformed_joints_3d": GT transformed joints 3d,
  "transformed_joints_3d_vis": visualization flags of joints 3d,
  "projected_joints_2d": GT joints 2d projected by joints 3d using camera parameters in each view,
  "projected_joints_2d_vis": visualization flags of joints 2d,
  "bbox": bounding boxes created by adding and subtracting an offset from the min/maxvalues of x and y values of each person's GT 2D keypoint,
  "bbox_clip": bbox cliped by image size,
  "vis_bbox": bounding boxes created by adding and subtracting an offset from the min/max values of x and y values of each person's GT 2D keypoint that visualization flag value is true,
  "vis_bbox_clip": vis_bbox cliped by image size }
  , ...
  ]
}

- Keypoints format

0: Neck
1: Nose
2: BodyCenter (center of hips)
3: lShoulder
4: lElbow
5: lWrist,
6: lHip
7: lKnee
8: lAnkle
9: rShoulder
10: rElbow
11: rWrist
12: rHip
13: rKnee
14: rAnkle
15: lEye
16: lEar
17: rEye
18: rEar
  • 3d keypoints: [x0, y0, z0, x1, y1, z1, ...]
  • 2d keypoints: [x0, y0, x1, y1, ...]

- Bounding box format of each 2d view

  • Box format: [left_top_x, left_top_y, right_bottom_x, right_bottom_y]
  • A box of people that has 3d coordinates but is not visible in the 2d view has coordinates [0, 0, 0, 0]

Docker Environments

- Pull docker environment

docker pull qbxlvnf11docker/panoptic_dataset_env:latest

- Run docker environment

nvidia-docker run -it -p 9000:9000 -e GRANT_SUDO=yes --user root --name panoptic_dataset_env --shm-size=4G -v {folder}:/workspace -w /workspace qbxlvnf11docker/panoptic_dataset_env bash

How to use

- Building Panoptic dataset annotations

  • Select the dataset and camera id to extract annotations by editing config file
python main.py --panoptic_config_file_path ./Panoptic_configs/Panoptic_annotations_builder_config.yaml

- Panoptic dataset download & preparation

  • Variable 'datasets': select the sequences to download
  • Variable 'nodes': select the camera ids to download
apt-get install wget
cd ./Panoptic_download_toolbox_scripts
./getData_list.sh
./extractAll_list.sh

References

- CMU Panoptic dataset paper

@article{CMU Panoptic Dataset,
  title={Panoptic Studio: A Massively Multiview System for Social Interaction Capture},
  author={Hanbyul Joo et al.},
  journal = {arXiv},
  year={2016}
}

- CMU Panoptic dataset

https://www.cs.cmu.edu/~hanbyulj/panoptic-studio/

https://paperswithcode.com/dataset/cmu-panoptic

- CMU Panoptic dataset download toolbox

https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox

- CMU Panoptic Pytorch dataset class

https://github.com/microsoft/voxelpose-pytorch

Author

Releases

No releases published

Packages

No packages published