-
Notifications
You must be signed in to change notification settings - Fork 299
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add LST Backward Average script (#333)
* Initial setup LST Backwar Average scripts and docs * Create and update color ramp in one command --------- Co-authored-by: Amber Mulder <amber.mulder@planet.com>
- Loading branch information
1 parent
ba2159c
commit 59d4b9d
Showing
4 changed files
with
193 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
33 changes: 33 additions & 0 deletions
33
...les/land-surface-temperature/land-surface-temperature-backward-average/index.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
--- | ||
title: Land Surface Temperature Backward Average | ||
grand_parent: Planetary Variables | ||
parent: Land Surface Temperature | ||
layout: script | ||
nav_exclude: false | ||
scripts: | ||
- [Visualization, script.js] | ||
- [Raw Values, raw.js] | ||
examples: | ||
- zoom: '11' | ||
lat: '44.8398' | ||
lng: '-0.5294' | ||
datasetId: '8d977093-cf9e-4351-8159-90f2522c29c1' | ||
fromTime: '2022-12-01T00:00:00.000Z' | ||
toTime: '2022-12-30T23:59:59.999Z' | ||
platform: | ||
- EOB | ||
evalscripturl: https://custom-scripts.sentinel-hub.com/custom-scripts/planetary-variables/land-surface-temperature/land-surface-temperature-backward-average/script.js | ||
additionalQueryParams: | ||
- - themeId | ||
- PLANET_SANDBOX | ||
--- | ||
## General description | ||
The Land Surface Temperature Backward Average is a method to reduce data gaps and measurement noise in the Land Surface Temperature (LST) data. Depending on the requirements, we can choose a lookback period, for example 20 days. The 20-day backward average of LST for day n is the average of LST over the 20 days preceding day n. We compute the backward average using all available measurements within this 20-day period, and therefore, we do have a valid value for every day, except in case of prolonged data unavailability, such as during long frost and snow periods. | ||
|
||
## Why it is useful | ||
The Land Surface Temperature Backward Average is suitable for applications where long-term temperatures are more relevant than daily fluctuations. The moving average operation reduces day-to-day variations and in the resulting time series, seasonal and longer-term changes can be easily detected. It can be used for monitoring drought risk, yield forecasting and analysis of climate change. | ||
|
||
## Useful links | ||
- [Product specifications](https://planet.widen.net/s/tltwk6hnps) | ||
- [Data sheet](https://planet.widen.net/s/ttvp2rvwzd) | ||
- [Sentinel Hub documentation about Land Surface Temperature](https://docs.sentinel-hub.com/api/latest/data/planetary-variables/land-surface-temp/) |
60 changes: 60 additions & 0 deletions
60
...etary-variables/land-surface-temperature/land-surface-temperature-backward-average/raw.js
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
//VERSION=3 | ||
|
||
// LST has two observations per day: 1h30 and 13h30 solar local time | ||
|
||
const date = "2022-12-31"; // The date for which the backward average is calculated | ||
const nDays = 20; // The number of days to load data for | ||
const scaleFactor = 100; // The scale factor for the SWC values | ||
const sensing_time = "0130"; // Observation time: "0130" or "1330" or "" | ||
const variable = "LST"; // Variable of interest: "LST" or "LST_MaskedPixels" | ||
|
||
function setup() { | ||
return { | ||
input: [variable, "dataMask"], | ||
output: { bands: 1, sampleType: "FLOAT32" }, | ||
mosaicking: "TILE", | ||
}; | ||
} | ||
|
||
// Select files based on sensing time (0130 or 1330) and within the last nDays | ||
function preProcessScenes(collections) { | ||
var calculationDate = new Date(date); | ||
collections.scenes.tiles = collections.scenes.tiles.filter(function (tile) { | ||
var tileDate = new Date(tile.date); | ||
return ( | ||
tile.dataPath.includes("T" + sensing_time) && | ||
tileDate.getTime() >= calculationDate.getTime() - nDays * 24 * 3600 * 1000 | ||
); | ||
}); | ||
return collections; | ||
} | ||
|
||
function get_mean_lst_value(samples) { | ||
// Get the sum of all LST values | ||
let n_valid_dates = 0; | ||
let sum = 0; | ||
for (let i = 0; i < samples.length; i++) { | ||
if (samples[i].dataMask) { | ||
sum += samples[i].LST / scaleFactor; | ||
n_valid_dates += 1; | ||
} | ||
} | ||
|
||
// Calculate the mean LST value | ||
let mean_lst_value = NaN; | ||
if (n_valid_dates > 0) { | ||
mean_lst_value = sum / n_valid_dates; | ||
} | ||
|
||
return mean_lst_value; | ||
} | ||
|
||
function evaluatePixel(samples) { | ||
// When there are no dates, return no data | ||
if (samples.length == 0) return [NaN]; | ||
|
||
// Calculate mean LST value | ||
const mean_lst_val = get_mean_lst_value(samples); | ||
|
||
return [mean_lst_val]; | ||
} |
99 changes: 99 additions & 0 deletions
99
...ry-variables/land-surface-temperature/land-surface-temperature-backward-average/script.js
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
//VERSION=3 | ||
|
||
// Set defaultVis to false to scale and set color_min and color_max values. | ||
// LST has two observations per day: 1h30 and 13h30 solar local time | ||
|
||
const date = "2022-12-31"; // The date for which the backward average is calculated | ||
const nDays = 20; // The number of days to load data for | ||
const scaleFactor = 100; // The scale factor for the SWC values | ||
const color_min = 260; // The minimum value of the colormap. | ||
const color_max = 280; // The maximum value of the colormap. | ||
const sensing_time = "0130"; // Observation time: "0130" or "1330" or "" | ||
const variable = "LST"; // Variable of interest: "LST" or "LST_MaskedPixels" | ||
|
||
function setup() { | ||
return { | ||
input: [variable, "dataMask"], | ||
output: { id: "default", bands: 4 }, | ||
mosaicking: "TILE", | ||
}; | ||
} | ||
|
||
// Select files based on sensing time (0130 or 1330) and within the last nDays | ||
function preProcessScenes(collections) { | ||
var calculationDate = new Date(date); | ||
collections.scenes.tiles = collections.scenes.tiles.filter(function (tile) { | ||
var tileDate = new Date(tile.date); | ||
return ( | ||
tile.dataPath.includes("T" + sensing_time) && | ||
tileDate.getTime() >= calculationDate.getTime() - nDays * 24 * 3600 * 1000 | ||
); | ||
}); | ||
return collections; | ||
} | ||
|
||
function get_mean_lst_value(samples) { | ||
// Get the sum of all LST values | ||
let n_valid_dates = 0; | ||
let sum = 0; | ||
for (let i = 0; i < samples.length; i++) { | ||
if (samples[i].dataMask) { | ||
sum += samples[i].LST / scaleFactor; | ||
n_valid_dates += 1; | ||
} | ||
} | ||
|
||
// Calculate the mean LST value | ||
let mean_lst_value = NaN; | ||
if (n_valid_dates > 0) { | ||
mean_lst_value = sum / n_valid_dates; | ||
} | ||
|
||
return mean_lst_value; | ||
} | ||
|
||
// Create color ramp 250 - 340 (full range) | ||
const cmap = [ | ||
[263, 0x000004], | ||
[266, 0x06051a], | ||
[270, 0x140e36], | ||
[274, 0x251255], | ||
[278, 0x3b0f70], | ||
[282, 0x51127c], | ||
[286, 0x641a80], | ||
[289, 0x782281], | ||
[293, 0x8c2981], | ||
[297, 0xa1307e], | ||
[301, 0xb73779], | ||
[305, 0xca3e72], | ||
[309, 0xde4968], | ||
[313, 0xed5a5f], | ||
[316, 0xf7705c], | ||
[320, 0xfc8961], | ||
[324, 0xfe9f6d], | ||
[328, 0xfeb77e], | ||
[332, 0xfecf92], | ||
[336, 0xfde7a9], | ||
[340, 0xfcfdbf], | ||
]; | ||
|
||
// Initialize the ColorRamp | ||
const visualizer = new ColorRampVisualizer(cmap, color_min, color_max); | ||
|
||
function evaluatePixel(samples) { | ||
// When there are no dates, return no data | ||
if (samples.length == 0) return [NaN, NaN, NaN, 0]; | ||
|
||
// Calculate mean LST value | ||
const mean_lst_val = get_mean_lst_value(samples); | ||
|
||
// Set opacity to 0 if there is no valid data | ||
let opacity = 1; | ||
if (isNaN(mean_lst_val)) { | ||
opacity = 0; | ||
} | ||
|
||
// Apply colormap | ||
imgVals = visualizer.process(mean_lst_val); | ||
return [...imgVals, opacity]; | ||
} |