Skip to content

Renovating Parsing R-CNN for Accurate Multiple Human Parsing

License

Notifications You must be signed in to change notification settings

soeaver/RP-R-CNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RP-R-CNN

Official implementation of Renovating Parsing R-CNN for Accurate Multiple Human Parsing (ECCV2020)

In this repository, we release the RP R-CNN code in Pytorch.

  • RP R-CNN architecture:

  • RP R-CNN output:

Citing RP R-CNN

If you use RP R-CNN, please use the following BibTeX entry.

@inproceedings{yang2020eccv,
  title = {Renovating Parsing R-CNN for Accurate Multiple Human Parsing},
  author = {Lu Yang and Qing Song and Zhihui Wang and Mengjie Hu and Chun Liu and Xueshi Xin and Wenhe Jia and Songcen Xu},
  booktitle = {Proceedings of European Conference on Computer Vision (ECCV)},
  year = {2020}
}

Installation

  • 8 x TITAN RTX GPU
  • pytorch1.4
  • python3.6.8

Install RP R-CNN following INSTALL.md.

Results and Models

On CIHP

Backbone LR Det AP mIoU Parsing (APp50/APvol/PCP50) DOWNLOAD
baseline 3x 68.3 56.2 64.6/54.3/60.9
R-50-FPN 3x 67.3 58.2 71.6/58.3/62.2
R-50-FPN 6x 68.2 60.2 74.1/59.5/64.9 GoogleDrive
+tta 6x 73.1 61.8 77.2/61.2/70.5

On MHP-v2

Backbone LR Det AP mIoU Parsing (APp50/APvol/PCP50) DOWNLOAD
baseline 3x 68.8 35.6 26.6/40.3/37.9
R-50-FPN 3x 68.1 37.3 40.5/45.2/39.2
R-50-FPN 6x 69.1 38.6 45.3/46.8/43.6 GoogleDrive
  • 'baseline' denotes our implementation Parsing R-CNN.
  • '+tta' denotes using test-time augmentation, including: soft-nms + bbox voting + h-flipping + multi-scale

ImageNet pretrained weight

Training

To train a model with 8 GPUs run:

python -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --cfg cfgs/CIHP/e2e_rp_rcnn_R-50-FPN_3x_ms.yaml

Evaluation

multi-gpu evaluation,

python tools/test_net.py --cfg ckpts/CIHP/e2e_rp_rcnn_R-50-FPN_6x_ms/e2e_rp_rcnn_R-50-FPN_6x_ms.yaml --gpu_id 0,1,2,3,4,5,6,7

single-gpu evaluation,

python tools/test_net.py --cfg ckpts/CIHP/e2e_rp_rcnn_R-50-FPN_6x_ms/e2e_rp_rcnn_R-50-FPN_6x_ms.yaml --gpu_id 0

License

RP-R-CNN is released under the MIT license.

About

Renovating Parsing R-CNN for Accurate Multiple Human Parsing

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published