-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #23 from spaceml-org/virtual-eve-camera-ready
Virtual EVE Camera Ready
- Loading branch information
Showing
54 changed files
with
53,380 additions
and
495 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
# default.yaml | ||
|
||
# MODEL SUMMARY | ||
# | Name | Type | Params | ||
# ------------------------------------------------------- | ||
# 0 | autoencoder | MaskedAutoencoderViT3D | 333 M | ||
# ------------------------------------------------------- | ||
# 329 M Trainable params | ||
# 4.7 M Non-trainable params | ||
# 333 M Total params | ||
# 1,335.838 Total estimated model params size (MB) | ||
|
||
# general | ||
log_level: 'DEBUG' | ||
experiment: | ||
name: "mae-helioprojected-2011" # generate random name in wandb | ||
project: "sdofm" | ||
task: "pretrain" # options: train, evaluate (not implemented) | ||
model: "samae" | ||
backbone_checkpoint: null | ||
seed: 0 | ||
disable_cuda: false | ||
resuming: false | ||
wandb: | ||
enable: true | ||
entity: "fdlx" | ||
group: "sdofm-phase1" | ||
job_type: "pretrain" | ||
tags: [] | ||
notes: "" | ||
output_directory: "wandb_output" | ||
log_model: "all" # can be True (final checkpoint), False (no checkpointing), or "all" (for all epoches) | ||
gcp_storage: # this will checkpoint all epoches, perhaps clean up this config | ||
enabled: true | ||
bucket: "sdofm-checkpoints" | ||
fold: null | ||
evaluate: false # skip training and only evaluate (requires checkpoint to be set) | ||
checkpoint: null # this is the wandb run_id of the checkpoint to load | ||
device: null # this is set automatically using the disable_cuda flag and torch.cuda.is_available() | ||
precision: '16' #-true' # (32, 64) for cuda, ('32-true', '16-true', 'bf16-true') for tpu | ||
log_n_batches: 1000 # log every n training batches | ||
save_results: true # save full results to file and wandb | ||
accelerator: "auto" # options are "auto", "gpu", "tpu", "ipu", or "cpu" | ||
profiler: null #'XLAProfiler' # 'XLAProfiler' # options are XLAProfiler/PyTorchProfiler Warning: XLA for TPUs only works on single world size | ||
distributed: | ||
enabled: true | ||
world_size: "auto" # The "auto" option recognizes the machine you are on, and selects the appropriate number of accelerators. | ||
log_every_n_steps: 50 | ||
|
||
# dataset configuration | ||
data: | ||
min_date: '2015-02-01 00:00:00.00' # NOT IMPLEMENTED # minimum is '2010-09-09 00:00:11.08' | ||
max_date: '2015-05-31 23:59:59.99' # NOT IMPLEMENTED # maximum is '2023-05-26 06:36:08.072' | ||
month_splits: # non selected months will form training set | ||
train: [1] #,2,3,4,5,6,7,8,9,10] | ||
val: [2] | ||
test: [3,4] | ||
holdout: [] | ||
num_workers: 16 # set appropriately for your machine | ||
prefetch_factor: 3 | ||
num_frames: 1 # WARNING: This is only read for FINETUNING, model num_frames overrides in BACKBONE | ||
drop_frame_dim: false | ||
# output_directory: "wandb_output" | ||
sdoml: | ||
base_directory: "/mnt/sdoml" | ||
sub_directory: | ||
hmi: "HMI.zarr" | ||
aia: "AIA.zarr" | ||
eve: "EVE_legacy.zarr" | ||
cache: "cache" | ||
components: null # null for select all magnetic components ["Bx", "By", "Bz"] | ||
wavelengths: null # null for select all wavelengths channels ["131A","1600A","1700A","171A","193A","211A","304A","335A","94A"] | ||
ions: null # null to select all ion channels ["C III", "Fe IX", "Fe VIII", "Fe X", "Fe XI", "Fe XII", "Fe XIII", "Fe XIV", "Fe XIX", "Fe XV", "Fe XVI", "Fe XVIII", "Fe XVI_2", "Fe XX", "Fe XX_2", "Fe XX_3", "H I", "H I_2", "H I_3", "He I", "He II", "He II_2", "He I_2", "Mg IX", "Mg X", "Mg X_2", "Ne VII", "Ne VIII", "O II", "O III", "O III_2", "O II_2", "O IV", "O IV_2", "O V", "O VI", "S XIV", "Si XII", "Si XII_2"] | ||
frequency: '12min' # smallest is 12min | ||
mask_with_hmi_threshold: null # None/null for no mask, float for threshold | ||
feature_engineering: | ||
enabled: true | ||
dclass: 'HelioProjected' | ||
|
||
# model configurations | ||
model: | ||
# PRETRAINERS | ||
mae: | ||
img_size: 512 | ||
patch_size: 16 | ||
num_frames: 1 | ||
tubelet_size: 1 | ||
in_chans: 9 | ||
embed_dim: 128 | ||
depth: 24 | ||
num_heads: 16 | ||
decoder_embed_dim: 512 | ||
decoder_depth: 8 | ||
decoder_num_heads: 16 | ||
mlp_ratio: 4.0 | ||
norm_layer: 'LayerNorm' | ||
norm_pix_loss: False | ||
masking_ratio: 0.75 | ||
samae: | ||
# uses all parameters as in mae plus these | ||
masking_type: "solar_aware" # 'random' or 'solar_aware' | ||
active_region_mu_degs: 15.73 | ||
active_region_std_degs: 6.14 | ||
active_region_scale: 1.0 | ||
active_region_abs_lon_max_degs: 60 | ||
active_region_abs_lat_max_degs: 60 | ||
nvae: | ||
use_se: true | ||
res_dist: true | ||
num_x_bits: 8 | ||
num_latent_scales: 3 # 5 | ||
num_groups_per_scale: 1 # 16 | ||
num_latent_per_group: 1 # 10 | ||
ada_groups: true | ||
min_groups_per_scale: 1 | ||
num_channels_enc: 30 | ||
num_channels_dec: 30 | ||
num_preprocess_blocks: 2 # 1 | ||
num_preprocess_cells: 2 | ||
num_cell_per_cond_enc: 2 | ||
num_postprocess_blocks: 2 # 1 | ||
num_postprocess_cells: 2 | ||
num_cell_per_cond_dec: 2 | ||
num_mixture_dec: 1 | ||
num_nf: 2 | ||
kl_anneal_portion: 0.3 | ||
kl_const_portion: 0.0001 | ||
kl_const_coeff: 0.0001 | ||
# learning_rate: 1e-2 | ||
# weight_decay: 3e-4 | ||
weight_decay_norm_anneal: true | ||
weight_decay_norm_init: 1. | ||
weight_decay_norm: 1e-2 | ||
|
||
# FINE-TUNERS | ||
degragation: | ||
num_neck_filters: 32 | ||
output_dim: 1 # not sure why this is implemented for autocorrelation, should be a scalar | ||
loss: "mse" # options: "mse", "heteroscedastic" | ||
freeze_encoder: true | ||
|
||
# ML optimization arguments: | ||
opt: | ||
loss: "mse" # options: "mae", "mse", "mape" | ||
scheduler: "constant" #other options: "cosine", "plateau", "exp" | ||
scheduler_warmup: 0 | ||
batch_size: 1 | ||
learning_rate: 0.0001 | ||
weight_decay: 3e-4 # 0.0 | ||
optimiser: "adam" | ||
epochs: 2 | ||
patience: 2 | ||
|
||
# hydra configuration | ||
# hydra: | ||
# sweeper: | ||
# params: | ||
# model.mae.embed_dim: 256, 512 | ||
# model.mae.masking_ratio: 0.5, 0.75 | ||
# model.samae.masking_type: "random", "solar_aware" | ||
|
||
hydra: | ||
mode: RUN |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -160,4 +160,4 @@ model: | |
# model.samae.masking_type: "random", "solar_aware" | ||
|
||
hydra: | ||
mode: RUN | ||
mode: RUN |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
# default.yaml | ||
|
||
# MODEL SUMMARY | ||
# | Name | Type | Params | ||
# ------------------------------------------------------- | ||
# 0 | autoencoder | MaskedAutoencoderViT3D | 333 M | ||
# ------------------------------------------------------- | ||
# 329 M Trainable params | ||
# 4.7 M Non-trainable params | ||
# 333 M Total params | ||
# 1,335.838 Total estimated model params size (MB) | ||
|
||
# general | ||
log_level: 'DEBUG' | ||
experiment: | ||
name: "mae-log-helioprojected-limbmasked-2011subset-r512-e128-p16" # generate random name in wandb | ||
project: "sdofm" | ||
task: "pretrain" # options: train, evaluate (not implemented) | ||
model: "mae" | ||
backbone_checkpoint: null | ||
seed: 0 | ||
disable_cuda: false | ||
resuming: false | ||
wandb: | ||
enable: true | ||
entity: "fdlx" | ||
group: "sdofm-phase1" | ||
job_type: "pretrain" | ||
tags: [] | ||
notes: "" | ||
output_directory: "wandb_output" | ||
log_model: "all" # can be True (final checkpoint), False (no checkpointing), or "all" (for all epoches) | ||
gcp_storage: # this will checkpoint all epoches, perhaps clean up this config | ||
enabled: true | ||
bucket: "sdofm-checkpoints" | ||
fold: null | ||
evaluate: false # skip training and only evaluate (requires checkpoint to be set) | ||
checkpoint: null # this is the wandb run_id of the checkpoint to load | ||
device: null # this is set automatically using the disable_cuda flag and torch.cuda.is_available() | ||
precision: '16-mixed' #-true' # (32, 64) for cuda, ('32-true', '16-true', 'bf16-true') for tpu | ||
log_n_batches: 1000 # log every n training batches | ||
save_results: true # save full results to file and wandb | ||
accelerator: "auto" # options are "auto", "gpu", "tpu", "ipu", or "cpu" | ||
profiler: null #'XLAProfiler' # 'XLAProfiler' # options are XLAProfiler/PyTorchProfiler Warning: XLA for TPUs only works on single world size | ||
distributed: | ||
enabled: true | ||
world_size: "auto" # The "auto" option recognizes the machine you are on, and selects the appropriate number of accelerators. | ||
log_every_n_steps: 50 | ||
|
||
# dataset configuration | ||
data: | ||
min_date: '2011-01-01 00:00:00.00' # NOT IMPLEMENTED # minimum is '2010-09-09 00:00:11.08' | ||
max_date: '2011-03-31 23:59:59.99' # NOT IMPLEMENTED # maximum is '2023-05-26 06:36:08.072' | ||
month_splits: # non selected months will form training set | ||
train: [1] #,2,3,4,5,6,7,8,9,10] | ||
val: [2] | ||
test: [3] | ||
holdout: [] | ||
num_workers: 16 # set appropriately for your machine | ||
prefetch_factor: 3 | ||
num_frames: 1 # WARNING: This is only read for FINETUNING, model num_frames overrides in BACKBONE | ||
drop_frame_dim: false | ||
# output_directory: "wandb_output" | ||
sdoml: | ||
base_directory: "/mnt/sdoml" | ||
sub_directory: | ||
hmi: "HMI.zarr" | ||
aia: "AIA.zarr" | ||
eve: "EVE_legacy.zarr" | ||
cache: "cache" | ||
components: null # null for select all magnetic components ["Bx", "By", "Bz"] | ||
wavelengths: null # null for select all wavelengths channels ["131A","1600A","1700A","171A","193A","211A","304A","335A","94A"] | ||
ions: null # null to select all ion channels ["C III", "Fe IX", "Fe VIII", "Fe X", "Fe XI", "Fe XII", "Fe XIII", "Fe XIV", "Fe XIX", "Fe XV", "Fe XVI", "Fe XVIII", "Fe XVI_2", "Fe XX", "Fe XX_2", "Fe XX_3", "H I", "H I_2", "H I_3", "He I", "He II", "He II_2", "He I_2", "Mg IX", "Mg X", "Mg X_2", "Ne VII", "Ne VIII", "O II", "O III", "O III_2", "O II_2", "O IV", "O IV_2", "O V", "O VI", "S XIV", "Si XII", "Si XII_2"] | ||
frequency: '12min' # smallest is 12min | ||
mask_with_hmi_threshold: null # None/null for no mask, float for threshold | ||
apply_mask: true | ||
feature_engineering: | ||
enabled: true | ||
dclass: 'Log' | ||
|
||
# model configurations | ||
model: | ||
# PRETRAINERS | ||
mae: | ||
img_size: 512 | ||
patch_size: 16 | ||
num_frames: 1 | ||
tubelet_size: 1 | ||
in_chans: 9 | ||
embed_dim: 128 | ||
depth: 24 | ||
num_heads: 16 | ||
decoder_embed_dim: 512 | ||
decoder_depth: 8 | ||
decoder_num_heads: 16 | ||
mlp_ratio: 4.0 | ||
norm_layer: 'LayerNorm' | ||
norm_pix_loss: False | ||
masking_ratio: 0.75 | ||
samae: | ||
# uses all parameters as in mae plus these | ||
masking_type: "solar_aware" # 'random' or 'solar_aware' | ||
active_region_mu_degs: 15.73 | ||
active_region_std_degs: 6.14 | ||
active_region_scale: 1.0 | ||
active_region_abs_lon_max_degs: 60 | ||
active_region_abs_lat_max_degs: 60 | ||
nvae: | ||
use_se: true | ||
res_dist: true | ||
num_x_bits: 8 | ||
num_latent_scales: 3 # 5 | ||
num_groups_per_scale: 1 # 16 | ||
num_latent_per_group: 1 # 10 | ||
ada_groups: true | ||
min_groups_per_scale: 1 | ||
num_channels_enc: 30 | ||
num_channels_dec: 30 | ||
num_preprocess_blocks: 2 # 1 | ||
num_preprocess_cells: 2 | ||
num_cell_per_cond_enc: 2 | ||
num_postprocess_blocks: 2 # 1 | ||
num_postprocess_cells: 2 | ||
num_cell_per_cond_dec: 2 | ||
num_mixture_dec: 1 | ||
num_nf: 2 | ||
kl_anneal_portion: 0.3 | ||
kl_const_portion: 0.0001 | ||
kl_const_coeff: 0.0001 | ||
# learning_rate: 1e-2 | ||
# weight_decay: 3e-4 | ||
weight_decay_norm_anneal: true | ||
weight_decay_norm_init: 1. | ||
weight_decay_norm: 1e-2 | ||
|
||
# FINE-TUNERS | ||
degragation: | ||
num_neck_filters: 32 | ||
output_dim: 1 # not sure why this is implemented for autocorrelation, should be a scalar | ||
loss: "mse" # options: "mse", "heteroscedastic" | ||
freeze_encoder: true | ||
|
||
# ML optimization arguments: | ||
opt: | ||
loss: "mse" # options: "mae", "mse", "mape" | ||
scheduler: "constant" #other options: "cosine", "plateau", "exp" | ||
scheduler_warmup: 0 | ||
batch_size: 1 | ||
learning_rate: 0.0001 | ||
weight_decay: 3e-4 # 0.0 | ||
optimiser: "adam" | ||
epochs: 2 | ||
patience: 2 | ||
|
||
misc: | ||
limb_mask: true | ||
|
||
# hydra configuration | ||
# hydra: | ||
# sweeper: | ||
# params: | ||
# model.mae.embed_dim: 256, 512 | ||
# model.mae.masking_ratio: 0.5, 0.75 | ||
# model.samae.masking_type: "random", "solar_aware" | ||
|
||
hydra: | ||
mode: RUN |
Oops, something went wrong.