Skip to content

tanglei-sys/JDSR-GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 

Repository files navigation

JDSR-GAN

Lei Tang, Guangwei Gao, Yi Yu, Fei Wu, Huimin Lu and Jian Yang, JDSR-GAN: Constructing A Joint and Collaborative Learning Network for Masked Face Super-Resolution

Overview

our structure

A Joint and Collaborative Learning Network for Masked Face Super-Resolution
Lei Tang (NJUPT), Guangwei Gao (NJUPT), et al.
Abstract: With the growing importance of preventing the COVID-19 virus, face images obtained in most video surveillance scenarios are low resolution with mask simultaneously. However, most of the previous face super-resolution solutions can not handle both tasks in one model. In this work, we treat the mask occlusion as image noise and construct a joint and collaborative learning network, called JDSR-GAN, for the masked face super-resolution task. Given a low-quality face image with the mask as input, the role of the generator composed of a denoising module and super-resolution module is to acquire a high-quality high-resolution face image. The discriminator utilizes some carefully designed loss functions to ensure the quality of the recovered face images. Moreover, we incorporate the identity information and attention mechanism into our network for feasible correlated feature expression and informative feature learning. By jointly performing denoising and face super-resolution, the two tasks can complement each other and attain promising performance. Extensive qualitative and quantitative results show the superiority of our proposed JDSR-GAN over some comparable methods which perform the previous two tasks separately..

Prerequisites

  • Python 3.6
  • Pytorch 1.2.0
  • CUDA 10.1 or higher

This code support NVIDIA apex-Distributed Training in Pytorch, please follow description.

Data Preparation

Results

Results

Test model

Citation

Releases

No releases published

Packages

No packages published