Chilean Alphabet Sign Language Recognizer for letters perform by static gestures using OpenCV and ConvNets (YoloV3 and Custom Lenet) on Pytorch.
- python==3.8
- pytorch==1.5.1
- torchvision==0.6.1
- opencv-python==4.2.0.32
- numpy==1.18.5
- pillow==7.2.0
- scikit-learn==0.22.2
- skimage==0.17.2
- pyttsx3==2.90
- gtts==2.1.1
- numba==0.50.1
- filterpy==1.4.5
-
Install Miniconda3 for Python 3.8: https://docs.conda.io/en/latest/miniconda.html
-
Add conda to path (depends on where you installed it)
source ~/miniconda3/etc/profile.d/conda.sh
-
Create environment. Do I have a nice and shiny NVIDIA GPU?
- YES
conda env create -f environment_gpu.yml
- NO
conda env create -f environment_cpu.yml
- Download
yolov3_face_hand.weights
file: https://tinyurl.com/3we23btn - Put
yolov3_face_hand.weights
file inweights/
folder
- Activate environment
conda activate lsch
$ python alphabet_recognizer.py CAM_INDEX
where CAM_INDEX
= 0 or 1, it depends where the USB camera is connected.
To check this, run:
$ ls -ltrh /dev/video*
$ python alphabet_recognizer.py VIDEO_PATH
You can try the repo example video:
$ python alphabet_recognizer.py testing_videos/ABC.mp4
If you have GPU, add -gpu
flag at the end:
$ python alphabet_recognizer.py CAM_INDEX -gpu
or
$ python alphabet_recognizer.py VIDEO_PATH -gpu
- If you are on a linux system and if the voice output is not working , then install
speak
ffmpeg
andlibspeak1
as shown below:
$ sudo apt install espeak ffmpeg libespeak1
- Make a Alphabet Static Gesture of LSCh (Click here to see the examples), and wait for the letter to be added to the displayed spelled word on the Word window.
- If you want to add a letter that is represented by a dynamic gesture, just enter it using the keyboard (G, J, Ñ, S, X or Z).
- To save and play the audio of the spelled word, press Enter.
- Other keyboard actions:
- B : Delete all.
- Backspace : Delete last letter.
- Space : Put a space at the end.
- Q : Close the application.
- Victor Vargas Sandoval victorvargassandoval93@gmail.com - Instituto de Informática UACh
- Victor Poblete - Instituto de Acústica UACh
- Pablo Huijse - Instituto de Informática UACh
- Yetzabeth González - Instituto de Acústica UACh
- YOLOv3: Neural Networks for Object Detection - https://github.com/AlexeyAB/darknet
- Object Detection and Tracker with Pytorch - https://github.com/izolot/pytorch-yolo-objectdetecttrack
- LeNet5 Arquitecture Review- https://towardsdatascience.com/understanding-and-implementing-lenet-5-cnn-architecture-deep-learning-a2d531ebc342
This project is licensed under the MIT License.
We would like to thank all those who have made this project possible, especially UACh Inclusiva for giving us their full support and showing us the reality of deaf people in Chile.