toulbar2 is an open-source black-box C++ optimizer for cost function networks and discrete additive graphical models. It can read a variety of formats. The optimized criteria and feasibility should be provided factorized in local cost functions on discrete variables. Constraints are represented as functions that produce costs that exceed a user-provided primal bound. toulbar2 looks for a non-forbidden assignment of all variables that optimizes the sum of all functions (a decision NP-complete problem).
toulbar2 won several competitions on deterministic and probabilistic graphical models:
- Max-CSP 2008 Competition CPAI08 (winner on 2-ARY-EXT and N-ARY-EXT)
- Probabilistic Inference Evaluation UAI 2008 (winner on several MPE tasks, inra entries)
- 2010 UAI APPROXIMATE INFERENCE CHALLENGE UAI 2010 (winner on 1200-second MPE task)
- The Probabilistic Inference Challenge PIC 2011 (second place by ficolofo on 1-hour MAP task)
- UAI 2014 Inference Competition UAI 2014 (winner on all MAP task categories, see Proteus, Robin, and IncTb entries)
You can install toulbar2 directly using the package manager in Debian and Debian derived Linux distributions (Ubuntu, Mint,...). For the most recent version, compile from source.
Download the latest release from GitHub (https://github.com/toulbar2/toulbar2) or similarly use tag versions, e.g.:
git clone --branch 1.0.0 https://github.com/toulbar2/toulbar2.git
Compilation requires git, cmake and a C++-11 capable compiler.
Required library:
- libgmp-dev
Recommended libraries (default use):
- libboost-dev
- libboost-graph-dev
- libboot-iostream-dev
- zlib
Optional libraries:
- libxml2-dev
- libopenmpi-dev
GNU C++ Symbols to be defined if using Linux Eclipse/CDT IDE (no value needed):
- BOOST
- LINUX
- LONGDOUBLE_PROB
- LONGLONG_COST
- NARYCHAR
- OPENMPI
- WCSPFORMATONLY
- WIDE_STRING Also C++11 should be set as the language standard.
Commands for compiling toulbar2 on Linux in directory toulbar2/src without cmake:
bash
cd src
echo '#define Toulbar_VERSION "1.0"' > ToulbarVersion.hpp
g++ -o toulbar2 -I. tb2*.cpp applis/*.cpp core/*.cpp globals/*.cpp incop/*.cpp search/*.cpp utils/*.cpp vns/*.cpp ToulbarVersion.cpp -std=c++11 -O3 -DNDEBUG \
-DBOOST -DLINUX -DLONGDOUBLE_PROB -DLONGLONG_COST -DNARYCHAR -DWCSPFORMATONLY -DWIDE_STRING -lgmp -static
Replace LONGLONG_COST by INT_COST to reduce memory usage by two and reduced cost range (costs must be smaller than 10^8).
Use OPENMPI flag and MPI compiler for a parallel version of toulbar2:
bash
cd src
echo '#define Toulbar_VERSION "1.0"' > ToulbarVersion.hpp
mpicxx -o toulbar2 -I. tb2*.cpp applis/*.cpp core/*.cpp globals/*.cpp incop/*.cpp search/*.cpp utils/*.cpp vns/*.cpp ToulbarVersion.cpp -std=c++11 -O3 -DNDEBUG \
-DBOOST -DLINUX -DLONGDOUBLE_PROB -DLONGLONG_COST -DNARYCHAR -DOPENMPI -DWCSPFORMATONLY -DWIDE_STRING -lgmp
toulbar2 was originally developped by Toulouse (INRA MIAT) and Barcelona (UPC, IIIA-CSIC) teams, hence the name of the solver.
Additional contributions by:
- Caen University, France (GREYC) and University of Oran, Algeria for (parallel) variable neighborhood search methods
- The Chinese University of Hong Kong and Caen University, France (GREYC) for global cost functions
- Marseille University, France (LSIS) for tree decomposition heuristics
- Ecole des Ponts ParisTech, France (CERMICS/LIGM) for INCOP local search solver
- University College Cork, Ireland (Insight) for a Python interface in NumberJack and a portfolio dedicated to UAI graphical models Proteus
- Artois University, France (CRIL) for an XCSP 2.1 format reader of CSP and WCSP instances
Please use one of the following references for citing toulbar2:
-
Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization Barry Hurley, Barry O'Sullivan, David Allouche, George Katsirelos, Thomas Schiex, Matthias Zytnicki, Simon de Givry Constraints, 21(3):413-434, 2016
-
Tractability-preserving Transformations of Global Cost Functions David Allouche, Christian Bessiere, Patrice Boizumault, Simon de Givry, Patricia Gutierrez, Jimmy HM. Lee, Ka Lun Leung, Samir Loudni, Jean-Philippe Métivier, Thomas Schiex, Yi Wu Artificial Intelligence, 238:166-189, 2016
-
Soft arc consistency revisited Martin Cooper, Simon de Givry, Marti Sanchez, Thomas Schiex, Matthias Zytnicki, and Thomas Werner Artificial Intelligence, 174(7-8):449-478, 2010
-
Soft arc consistency (AC): Arc consistency for Soft Constraints T. Schiex Proc. of CP'2000. Singapour, September 2000.
-
More soft arc consistencies (NC, DAC, FDAC): In the quest of the best form of local consistency for Weighted CSP J. Larrosa & T. Schiex In Proc. of IJCAI-03. Acapulco, Mexico, 2003
-
Soft existential arc consistency (EDAC) Existential arc consistency: Getting closer to full arc consistency in weighted csps S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa In Proc. of IJCAI-05, Edinburgh, Scotland, 2005
-
Depth-first Branch and Bound exploiting a tree decomposition (BTD) Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP S. de Givry, T. Schiex, and G. Verfaillie In Proc. of AAAI-06, Boston, MA, 2006
-
Virtual arc consistency (VAC) Virtual arc consistency for weighted csp M. Cooper, S. de Givry, M. Sanchez, T. Schiex, and M. Zytnicki In Proc. of AAAI-08, Chicago, IL, 2008
-
Soft generalized arc consistencies (GAC, FDGAC) Towards Efficient Consistency Enforcement for Global Constraints in Weighted Constraint Satisfaction J. H. M. Lee and K. L. Leung In Proc. of IJCAI-09, Los Angeles, USA, 2010
-
Russian doll search exploiting a tree decomposition (RDS-BTD) Russian doll search with tree decomposition M Sanchez, D Allouche, S de Givry, and T Schiex In Proc. of IJCAI'09, Pasadena (CA), USA, 2009
-
Soft bounds arc consistency (BAC) Bounds Arc Consistency for Weighted CSPs M. Zytnicki, C. Gaspin, S. de Givry, and T. Schiex Journal of Artificial Intelligence Research, 35:593-621, 2009
-
Counting solutions in satisfaction (#BTD, Approx_#BTD) Exploiting problem structure for solution counting A. Favier, S. de Givry, and P. Jégou In Proc. of CP-09, Lisbon, Portugal, 2009
-
Soft existential generalized arc consistency (EDGAC) A Stronger Consistency for Soft Global Constraints in Weighted Constraint Satisfaction J. H. M. Lee and K. L. Leung In Proc. of AAAI-10, Boston, MA, 2010
-
Preprocessing techniques (combines variable elimination and cost function decomposition) Pairwise decomposition for combinatorial optimization in graphical models A Favier, S de Givry, A Legarra, and T Schiex In Proc. of IJCAI-11, Barcelona, Spain, 2011
-
Decomposable global cost functions (wregular, wamong, wsum) Decomposing global cost functions D Allouche, C Bessiere, P Boizumault, S de Givry, P Gutierrez, S Loudni, JP Métivier, and T Schiex In Proc. of AAAI-12, Toronto, Canada, 2012
-
Pruning by dominance (DEE) Dead-End Elimination for Weighted CSP S de Givry, S Prestwich, and B O'Sullivan In Proc. of CP-13, pages 263-272, Uppsala, Sweden, 2013
-
Hybrid best-first search exploiting a tree decomposition (HBFS) Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP D Allouche, S de Givry, G Katsirelos, T Schiex, and M Zytnicki In Proc. of CP-15, Cork, Ireland, 2015
-
Unified parallel decomposition guided variable neighborhood search (UDGVNS/UPDGVNS) Iterative Decomposition Guided Variable Neighborhood Search for Graphical Model Energy Minimization A Ouali, D Allouche, S de Givry, S Loudni, Y Lebbah, F Eckhardt, and L Loukil In Proc. of UAI-17, pages 550-559, Sydney, Australia, 2017
-
Clique cut global cost function (clique) Clique Cuts in Weighted Constraint Satisfaction S de Givry and G Katsirelos In Proc. of CP-17, pages 97-113, Melbourne, Australia, 2017
Copyright (C) 2006-2018, toulbar2 team. toulbar2 is currently maintained by Simon de Givry, INRA - MIAT, Toulouse, France (simon.de-givry@inra.fr)