https://arxiv.org/abs/2312.00699
This codebase is built on top of Detectron2. Follow the instructions here to install Detectron2.
Dataset | Weights |
---|---|
PubTables1M | PubTables1M |
FinTabNet | FinTabNet |
SciTSR | SciTSR |
Check the inference.py and test.sh for the inference. A sample inference command could be:
python inference.py --mode recognize --structure_config_path <path of config.yaml> --structure_model_path <path of weight> --structure_device cuda --image_dir <dir of table images> --out_dir <output dir> --html --visualize --csv --crop_padding 0
Check the teds.py for calculating the TEDS score.
Please cite our work if you think it is helpful:
@article{xiao2023rethinking,
title={Rethinking Detection Based Table Structure Recognition for Visually Rich Documents},
author={Xiao, Bin and Simsek, Murat and Kantarci, Burak and Alkheir, Ala Abu},
journal={arXiv preprint arXiv:2312.00699},
year={2023}
}
This project heavily relys on Table-Transformer, especially for the post-processing part. We thank the authors for sharing their implementations and related resources.