Skip to content

uobinxiao/CascadeTSRDet

Repository files navigation

Rethinking Detection Based Table Structure Recognition for Visually Rich Document Images

Paper Link

https://arxiv.org/abs/2312.00699

Requirements

This codebase is built on top of Detectron2. Follow the instructions here to install Detectron2.

Datasets and Pretrained Model

Dataset Weights
PubTables1M PubTables1M
FinTabNet FinTabNet
SciTSR SciTSR

Configuration and Training

Inference and Evaluation

Check the inference.py and test.sh for the inference. A sample inference command could be:

python inference.py --mode recognize --structure_config_path <path of config.yaml> --structure_model_path <path of weight> --structure_device cuda --image_dir <dir of table images> --out_dir <output dir> --html --visualize --csv --crop_padding 0

Check the teds.py for calculating the TEDS score.

Citing

Please cite our work if you think it is helpful:

@article{xiao2023rethinking,
  title={Rethinking Detection Based Table Structure Recognition for Visually Rich Documents},
  author={Xiao, Bin and Simsek, Murat and Kantarci, Burak and Alkheir, Ala Abu},
  journal={arXiv preprint arXiv:2312.00699},
  year={2023}
}

Acknowledgement

This project heavily relys on Table-Transformer, especially for the post-processing part. We thank the authors for sharing their implementations and related resources.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages