WebGPU abstraction using .ddd with Gradio
preprocess_ddd and postprocess_webgpu as a ddd to WebGPU Gradio component abstraction
given a library for WebGPU interaction this adds support for .ddd files as input and output components to simplfy calls. Here's a basic template to illustrate the idea see: ddd.ddd
import gradio as gr
import your_webgpu_library as wgpu # Replace 'your_webgpu_library' with the actual library name
def preprocess_ddd(file_path):
# Custom code to load and preprocess the .ddd file
with open(file_path, 'r') as file:
data = file.read()
return data
def postprocess_webgpu(output):
# Custom code to process WebGPU output before displaying it
# This could involve converting the WebGPU output to a format suitable for display
return output
ddd_input = gr.inputs.File(label="Upload your .ddd file", preprocess=preprocess_ddd)
webgpu_output = gr.outputs.Text(postprocess=postprocess_webgpu)
def webgpu_interaction(input_data):
# Replace this with your actual code to interact with WebGPU
# For example, you could pass the preprocessed .ddd data to your WebGPU library
output = your_webgpu_library_function(input_data)
return output
gr_interface = gr.Interface(
fn=webgpu_interaction,
inputs=ddd_input,
outputs=webgpu_output,
)
gr_interface.launch()
defining two custom functions, preprocess_ddd and postprocess_webgpu, to handle the loading and processing of .ddd files and the postprocessing of WebGPU output, respectively.
The preprocess_ddd function is a preprocessor for the .ddd files taking the file path as input, loading the file's data, and preprocesses the data for use with WebGPU. Replace the placeholder logic with your actual .ddd file handling and processing code.
The postprocess_webgpu function is a postprocessor for the WebGPU output. It takes the raw WebGPU output as input and processes it before displaying it. The exact postprocessing logic will depend on the specific output format of your WebGPU library and how you want to visualize or present the results.
We then define a custom input component ddd_input using gr.inputs.File, specifying the preprocess_ddd function as the preprocessor.
Next, we define the output component webgpu_output using gr.outputs.Text, specifying the postprocess_webgpu function as the postprocessor.
Finally, we create the Gradio interface with gr.Interface, passing the webgpu_interaction function as the main function to interact with WebGPU, and specifying the ddd_input and webgpu_output components.
Keep in mind that this is a simplified example to illustrate the idea of custom preprocessors and postprocessors for interaction between WebGPU preprocess and .ddd file postprocess. Code adaptations to follow on a when ready deployment schedule.
ddd (c) 2023 codephreak MIT license
So tired of flatnet. I have been waiting half a lifetime for the internet to become 3D. codephreak was here