forked from d-run/drun-docs
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request d-run#58 from windsonsea/features
Add features to each module
- Loading branch information
Showing
11 changed files
with
158 additions
and
386 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
--- | ||
hide: | ||
- toc | ||
--- | ||
|
||
# 功能特性 | ||
|
||
智能应用的功能特性参见下表: | ||
|
||
| 主要功能 | 细分项 | | ||
| ------- | ------ | | ||
| 对话 | 支持基于已发布的应用关联语料库,实现智能问答功能 | | ||
| | 对AI提供的回答,用户可以进行评价,复制,重新生成,删除对话或提交反馈,高度互动 | | ||
| 应用中心 | 支持创建RAG知识问答应用,提供应用的全生命周期管理,以及绑定或解绑工作空间,实现环境隔离 | | ||
| | 支持使用GLM、Llama等模型服务作为应用的模型服务,实现RAG | | ||
| | 提供多种配置选项,包括AI配置、关联语料库、检索策略、召回策略和提示词模板,以优化AI回答的效果 | | ||
| | 支持创建应用的密钥,用于OpenAPI对话,保证安全性 | | ||
| 语料库 | 支持使用北京智源人工智能研究院的bge-large-zh-v1.5、bge-large-en-v1.5对语料进行特征提取 | | ||
| | 支持多种导入方式,包括标准导入、格式化导入、手动导入、图文导入 | | ||
| | 支持多种分片方式,包括按照分割符、分片大小进行分片 | | ||
| | 支持使用插件对文件进行自定义分片 | | ||
| | 支持设置语料库的访问级别,保证数据隔离 | | ||
| | 支持CSV和Excel格式导出语料库分片,方便后续处理和分析 | | ||
| 数据分析 | 提供问答质量、问答次数、分片质量、分片命中率等数据分析 | | ||
| | 收集并处理用户反馈意见,以便改进服务 | | ||
| 我的反馈 | 保存用户提交过的反馈信息,记录用户的使用体验 | | ||
| 系统配置 | 提供配置聊天记忆轮数、提示词模板等系统配置选项 | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
--- | ||
hide: | ||
- toc | ||
--- | ||
|
||
# 功能特性 | ||
|
||
模型中心的功能特性参见下表: | ||
|
||
| 主要功能 | 细分项 | | ||
| ------- | ------ | | ||
| 模型管理 | 提供图形化界面,能够直观地进行GLM系列模型的推理 | | ||
| | 提供图形化界面,能够直观地进行Llama系列模型的推理 | | ||
| | 提供图形化界面,能够直观地进行百川系列模型的推理 | | ||
| | 提供图形化界面,能够直观地进行文心一言系列模型的推理 | | ||
| | 支持查看模型微调出来的模型 | | ||
| | 可视化进行微调模型推理 | | ||
| | 提供图形化界面,能够直观地进行微调模型推理的对话内容对比 | | ||
| 模型服务 | 提供全面的本地模型服务管理,覆盖模型服务的整个生命周期 | | ||
| | 提供在线模型服务的API key管理,并实现智能负载均衡,提升使用效率 | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
--- | ||
hide: | ||
- toc | ||
--- | ||
|
||
# 功能特性 | ||
|
||
模型微调的功能特性参见下表: | ||
|
||
| 主要功能 | 细分项 | | ||
| ------- | ------ | | ||
| 微调实验 | 提供直观的界面,可视化地进行Llama系列模型(7B/13B)的指令微调 | | ||
| | 支持跨GPU的模型分布式微调,提升训练效率 | | ||
| | 支持使用不同的参数组和数据集创建微调实验,进行交叉微调 | | ||
| | 支持查看微调过程中的学习率、训练损失和验证损失等关键数据,实时监控模型训练状态 | | ||
| | 支持对检查点(checkpoint)进行评估打分,保证模型质量 | | ||
| | 支持将模型存储到模型中心,提供可视化的模型列表和训练参数查看 | | ||
| 数据集 | 提供直观的界面,可视化地创建数据集,包括训练、验证和测试数据集 | | ||
| | 支持直接从S3存储中拉取文件,方便快捷 | | ||
| | 支持本地文件上传,提供多种数据接入方式 | | ||
| 参数组 | 提供直观的界面,可视化地创建超参数组,包括调度器(Scheduler)、优化器(Optimizer)、学习率(LearningRate)、训练周期(Epochs)和批次大小(BatchSize)等 | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
File renamed without changes.
Oops, something went wrong.