Crypto related functions and helpers for Swift implemented in Swift. (#PureSwift)
Note: The main
branch follows the latest currently released version of Swift. If you need an earlier version for an older version of Swift, you can specify its version in your Podfile
or use the code on the branch for that version. Older branches are unsupported. Check versions for details.
Requirements | Features | Contribution | Installation | Swift versions | How-to | Author | License | Changelog
It takes some time to keep it all for your convenience, so maybe spare $1, so I can keep working on that. There are more than 8000 clones daily. If I'd get $1/month from each company that uses my work here, I'd say we're even. Hurry up, find the Sponsorship button, and fulfill your duty.
CryptoSwift isn't backed by any big company and is developer in my spare time that I also use to as a freelancer.
Good mood
- Easy to use
- Convenient extensions for String and Data
- Support for incremental updates (stream, ...)
- iOS, Android, macOS, AppleTV, watchOS, Linux support
MD5 | SHA1 | SHA2-224 | SHA2-256 | SHA2-384 | SHA2-512 | SHA3
AES-128, AES-192, AES-256 | ChaCha20 | Rabbit | Blowfish
Poly1305 | HMAC (MD5, SHA1, SHA256) | CMAC | CBC-MAC
- Electronic codebook (ECB)
- Cipher-block chaining (CBC)
- Propagating Cipher Block Chaining (PCBC)
- Cipher feedback (CFB)
- Output Feedback (OFB)
- Counter Mode (CTR)
- Galois/Counter Mode (GCM)
- Counter with Cipher Block Chaining-Message Authentication Code (CCM)
- OCB Authenticated-Encryption Algorithm (OCB)
- PBKDF1 (Password-Based Key Derivation Function 1)
- PBKDF2 (Password-Based Key Derivation Function 2)
- HKDF (HMAC-based Extract-and-Expand Key Derivation Function)
- Scrypt (The scrypt Password-Based Key Derivation Function)
- PKCS#5
- EMSA-PKCS1-v1_5 (Encoding Method for Signature)
- EME-PCKS1-v1_5 (Encoding Method for Encryption)
- PKCS#7
- Zero padding
- ISO78164
- ISO10126
- No padding
You want to help, great! Go ahead and fork our repo, make your changes and send us a pull request.
Check out CONTRIBUTING.md for more information on how to help with CryptoSwift.
- If you found a bug, open a discussion.
- If you have a feature request, open a discussion.
Binary CryptoSwift.xcframework (Used by Swift Package Manager package integration) won't load properly in your app if the app uses Sign to Run Locally Signing Certificate with Hardened Runtime enabled. It is possible to setup Xcode like this. To solve the problem you have two options:
- Use proper Signing Certificate, eg. Development <- this is the proper action
- Use
Disable Library Validation
akacom.apple.security.cs.disable-library-validation
entitlement
To install CryptoSwift, add it as a submodule to your project (on the top level project directory):
git submodule add https://github.com/krzyzanowskim/CryptoSwift.git
It is recommended to enable Whole-Module Optimization to gain better performance. Non-optimized build results in significantly worse performance.
You can use Swift Package Manager and specify dependency in Package.swift
by adding this:
.package(url: "https://github.com/krzyzanowskim/CryptoSwift.git", .upToNextMajor(from: "1.6.0"))
Notice: Swift Package Manager uses debug configuration for debug Xcode build, that may result in significant (up to x10000) worse performance. Performance characteristic is different in Release build. To overcome this prolem, consider embed CryptoSwift.xcframework
described below.
You can use CocoaPods.
pod 'CryptoSwift', '~> 1.6.0'
Bear in mind that CocoaPods will build CryptoSwift without Whole-Module Optimization that may impact performance. You can change it manually after installation, or use cocoapods-wholemodule plugin.
You can use Carthage. Specify in Cartfile:
github "krzyzanowskim/CryptoSwift"
Run carthage
to build the framework and drag the built CryptoSwift.framework into your Xcode project. Follow build instructions. Common issues.
XCFrameworks require Xcode 11 or later and they can be integrated similarly to how we’re used to integrating the .framework
format.
Please use script scripts/build-framework.sh to generate binary CryptoSwift.xcframework
archive that you can use as a dependency in Xcode.
CryptoSwift.xcframework is a Release (Optimized) binary that offer best available Swift code performance.
Embedded frameworks require a minimum deployment target of iOS 9 or macOS Sierra (10.12). Drag the CryptoSwift.xcodeproj
file into your Xcode project, and add appropriate framework as a dependency to your target. Now select your App and choose the General tab for the app target. Find Embedded Binaries and press "+", then select CryptoSwift.framework
(iOS, macOS, watchOS or tvOS)
Sometimes "embedded framework" option is not available. In that case, you have to add new build phase for the target.
In the project, you'll find single scheme for all platforms:
- CryptoSwift
- Swift 1.2: branch swift12 version <= 0.0.13
- Swift 2.1: branch swift21 version <= 0.2.3
- Swift 2.2, 2.3: branch swift2 version <= 0.5.2
- Swift 3.1, branch swift3 version <= 0.6.9
- Swift 3.2, branch swift32 version = 0.7.0
- Swift 4.0, branch swift4 version <= 0.12.0
- Swift 4.2, branch swift42 version <= 0.15.0
- Swift 5.0, branch swift5 version <= 1.2.0
- Swift 5.1, branch swift5 version <= 1.3.3
- Swift 5.3 and newer, branch main
- Basics (data types, conversion, ...)
- Digest (MD5, SHA...)
- Message authenticators (HMAC, CMAC...)
- Password-Based Key Derivation Function (PBKDF2, ...)
- HMAC-based Key Derivation Function (HKDF)
- Data Padding
- ChaCha20
- Rabbit
- Blowfish
- AES - Advanced Encryption Standard
- AES-GCM
- Authenticated Encryption with Associated Data (AEAD)
import CryptoSwift
CryptoSwift uses array of bytes aka Array<UInt8>
as a base type for all operations. Every data may be converted to a stream of bytes. You will find convenience functions that accept String
or Data
, and it will be internally converted to the array of bytes.
For your convenience, CryptoSwift provides two functions to easily convert an array of bytes to Data
or Data
to an array of bytes:
Data from bytes:
let data = Data([0x01, 0x02, 0x03])
Data
to Array<UInt8>
let bytes = data.bytes // [1,2,3]
Hexadecimal encoding:
let bytes = Array<UInt8>(hex: "0x010203") // [1,2,3]
let hex = bytes.toHexString() // "010203"
Build bytes out of String
let bytes: Array<UInt8> = "cipherkey".bytes // Array("cipherkey".utf8)
Also... check out helpers that work with Base64 encoded data:
"aPf/i9th9iX+vf49eR7PYk2q7S5xmm3jkRLejgzHNJs=".decryptBase64ToString(cipher)
"aPf/i9th9iX+vf49eR7PYk2q7S5xmm3jkRLejgzHNJs=".decryptBase64(cipher)
bytes.toBase64()
Hashing a data or array of bytes (aka Array<UInt8>
)
/* Hash struct usage */
let bytes: Array<UInt8> = [0x01, 0x02, 0x03]
let digest = input.md5()
let digest = Digest.md5(bytes)
let data = Data([0x01, 0x02, 0x03])
let hash = data.md5()
let hash = data.sha1()
let hash = data.sha224()
let hash = data.sha256()
let hash = data.sha384()
let hash = data.sha512()
do {
var digest = MD5()
let partial1 = try digest.update(withBytes: [0x31, 0x32])
let partial2 = try digest.update(withBytes: [0x33])
let result = try digest.finish()
} catch { }
Hashing a String and printing result
let hash = "123".md5() // "123".bytes.md5()
bytes.crc16()
data.crc16()
bytes.crc32()
data.crc32()
// Calculate Message Authentication Code (MAC) for message
let key: Array<UInt8> = [1,2,3,4,5,6,7,8,9,10,...]
try Poly1305(key: key).authenticate(bytes)
try HMAC(key: key, variant: .sha256).authenticate(bytes)
try CMAC(key: key).authenticate(bytes)
let password: Array<UInt8> = Array("s33krit".utf8)
let salt: Array<UInt8> = Array("nacllcan".utf8)
let key = try PKCS5.PBKDF2(password: password, salt: salt, iterations: 4096, keyLength: 32, variant: .sha256).calculate()
let password: Array<UInt8> = Array("s33krit".utf8)
let salt: Array<UInt8> = Array("nacllcan".utf8)
// Scrypt implementation does not implement work parallelization, so `p` parameter will
// increase the work time even in multicore systems
let key = try Scrypt(password: password, salt: salt, dkLen: 64, N: 16384, r: 8, p: 1).calculate()
let password: Array<UInt8> = Array("s33krit".utf8)
let salt: Array<UInt8> = Array("nacllcan".utf8)
let key = try HKDF(password: password, salt: salt, variant: .sha256).calculate()
Some content-encryption algorithms assume the input length is a multiple of k
octets, where k
is greater than one. For such algorithms, the input shall be padded.
Padding.pkcs7.add(to: bytes, blockSize: AES.blockSize)
let encrypted = try ChaCha20(key: key, iv: iv).encrypt(message)
let decrypted = try ChaCha20(key: key, iv: iv).decrypt(encrypted)
let encrypted = try Rabbit(key: key, iv: iv).encrypt(message)
let decrypted = try Rabbit(key: key, iv: iv).decrypt(encrypted)
let encrypted = try Blowfish(key: key, blockMode: CBC(iv: iv), padding: .pkcs7).encrypt(message)
let decrypted = try Blowfish(key: key, blockMode: CBC(iv: iv), padding: .pkcs7).decrypt(encrypted)
Notice regarding padding: Manual padding of data is optional, and CryptoSwift is using PKCS7 padding by default. If you need to manually disable/enable padding, you can do this by setting parameter for AES class
Variant of AES encryption (AES-128, AES-192, AES-256) depends on given key length:
- AES-128 = 16 bytes
- AES-192 = 24 bytes
- AES-256 = 32 bytes
AES-256 example
let encryptedBytes = try AES(key: [1,2,3,...,32], blockMode: CBC(iv: [1,2,3,...,16]), padding: .pkcs7)
Full example:
let password: [UInt8] = Array("s33krit".utf8)
let salt: [UInt8] = Array("nacllcan".utf8)
/* Generate a key from a `password`. Optional if you already have a key */
let key = try PKCS5.PBKDF2(
password: password,
salt: salt,
iterations: 4096,
keyLength: 32, /* AES-256 */
variant: .sha256
).calculate()
/* Generate random IV value. IV is public value. Either need to generate, or get it from elsewhere */
let iv = AES.randomIV(AES.blockSize)
/* AES cryptor instance */
let aes = try AES(key: key, blockMode: CBC(iv: iv), padding: .pkcs7)
/* Encrypt Data */
let inputData = Data()
let encryptedBytes = try aes.encrypt(inputData.bytes)
let encryptedData = Data(encryptedBytes)
/* Decrypt Data */
let decryptedBytes = try aes.decrypt(encryptedData.bytes)
let decryptedData = Data(decryptedBytes)
do {
let aes = try AES(key: "keykeykeykeykeyk", iv: "drowssapdrowssap") // aes128
let ciphertext = try aes.encrypt(Array("Nullam quis risus eget urna mollis ornare vel eu leo.".utf8))
} catch { }
Incremental operations use instance of Cryptor and encrypt/decrypt one part at a time, this way you can save on memory for large files.
do {
var encryptor = try AES(key: "keykeykeykeykeyk", iv: "drowssapdrowssap").makeEncryptor()
var ciphertext = Array<UInt8>()
// aggregate partial results
ciphertext += try encryptor.update(withBytes: Array("Nullam quis risus ".utf8))
ciphertext += try encryptor.update(withBytes: Array("eget urna mollis ".utf8))
ciphertext += try encryptor.update(withBytes: Array("ornare vel eu leo.".utf8))
// finish at the end
ciphertext += try encryptor.finish()
print(ciphertext.toHexString())
} catch {
print(error)
}
let input: Array<UInt8> = [0,1,2,3,4,5,6,7,8,9]
let key: Array<UInt8> = [0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00]
let iv: Array<UInt8> = // Random bytes of `AES.blockSize` length
do {
let encrypted = try AES(key: key, blockMode: CBC(iv: iv), padding: .pkcs7).encrypt(input)
let decrypted = try AES(key: key, blockMode: CBC(iv: iv), padding: .pkcs7).decrypt(encrypted)
} catch {
print(error)
}
AES without data padding
let input: Array<UInt8> = [0,1,2,3,4,5,6,7,8,9]
let encrypted: Array<UInt8> = try! AES(key: Array("secret0key000000".utf8), blockMode: CBC(iv: Array("0123456789012345".utf8)), padding: .noPadding).encrypt(input)
Using convenience extensions
let plain = Data([0x01, 0x02, 0x03])
let encrypted = try! plain.encrypt(ChaCha20(key: key, iv: iv))
let decrypted = try! encrypted.decrypt(ChaCha20(key: key, iv: iv))
The result of Galois/Counter Mode (GCM) encryption is ciphertext and authentication tag, that is later used to decryption.
encryption
do {
// In combined mode, the authentication tag is directly appended to the encrypted message. This is usually what you want.
let gcm = GCM(iv: iv, mode: .combined)
let aes = try AES(key: key, blockMode: gcm, padding: .noPadding)
let encrypted = try aes.encrypt(plaintext)
let tag = gcm.authenticationTag
} catch {
// failed
}
decryption
do {
// In combined mode, the authentication tag is appended to the encrypted message. This is usually what you want.
let gcm = GCM(iv: iv, mode: .combined)
let aes = try AES(key: key, blockMode: gcm, padding: .noPadding)
return try aes.decrypt(encrypted)
} catch {
// failed
}
Note: GCM instance is not intended to be reused. So you can't use the same GCM
instance from encoding to also perform decoding.
The result of Counter with Cipher Block Chaining-Message Authentication Code encryption is ciphertext and authentication tag, that is later used to decryption.
do {
// The authentication tag is appended to the encrypted message.
let tagLength = 8
let ccm = CCM(iv: iv, tagLength: tagLength, messageLength: ciphertext.count - tagLength, additionalAuthenticatedData: data)
let aes = try AES(key: key, blockMode: ccm, padding: .noPadding)
return try aes.decrypt(encrypted)
} catch {
// failed
}
Check documentation or CCM specification for valid parameters for CCM.
let encrypt = try AEADChaCha20Poly1305.encrypt(plaintext, key: key, iv: nonce, authenticationHeader: header)
let decrypt = try AEADChaCha20Poly1305.decrypt(ciphertext, key: key, iv: nonce, authenticationHeader: header, authenticationTag: tagArr: tag)
RSA initialization from parameters
let input: Array<UInt8> = [0,1,2,3,4,5,6,7,8,9]
let n: Array<UInt8> = // RSA modulus
let e: Array<UInt8> = // RSA public exponent
let d: Array<UInt8> = // RSA private exponent
let rsa = RSA(n: n, e: e, d: d)
do {
let encrypted = try rsa.encrypt(input)
let decrypted = try rsa.decrypt(encrypted)
} catch {
print(error)
}
RSA key generation
let rsa = try RSA(keySize: 2048) // This generates a modulus, public exponent and private exponent with the given size
RSA Encryption & Decryption Example
// Alice Generates a Private Key
let alicesPrivateKey = try RSA(keySize: 1024)
// Alice shares her **public** key with Bob
let alicesPublicKeyData = try alicesPrivateKey.publicKeyExternalRepresentation()
// Bob receives the raw external representation of Alices public key and imports it
let bobsImportOfAlicesPublicKey = try RSA(rawRepresentation: alicesPublicKeyData)
// Bob can now encrypt a message for Alice using her public key
let message = "Hi Alice! This is Bob!"
let privateMessage = try bobsImportOfAlicesPublicKey.encrypt(message.bytes)
// This results in some encrypted output like this
// URcRwG6LfH63zOQf2w+HIllPri9Rb6hFlXbi/bh03zPl2MIIiSTjbAPqbVFmoF3RmDzFjIarIS7ZpT57a1F+OFOJjx50WYlng7dioKFS/rsuGHYnMn4csjCRF6TAqvRQcRnBueeINRRA8SLaLHX6sZuQkjIE5AoHJwgavmiv8PY=
// Bob can now send this encrypted message to Alice without worrying about people being able to read the original contents
// Alice receives the encrypted message and uses her private key to decrypt the data and recover the original message
let originalDecryptedMessage = try alicesPrivateKey.decrypt(privateMessage)
print(String(data: Data(originalDecryptedMessage), encoding: .utf8))
// "Hi Alice! This is Bob!"
RSA Signature & Verification Example
// Alice Generates a Private Key
let alicesPrivateKey = try RSA(keySize: 1024)
// Alice wants to sign a message that she agrees with
let messageAliceSupports = "Hi my name is Alice!"
let alicesSignature = try alicesPrivateKey.sign(messageAliceSupports.bytes)
// Alice shares her Public key and the signature with Bob
let alicesPublicKeyData = try alicesPrivateKey.publicKeyExternalRepresentation()
// Bob receives the raw external representation of Alices Public key and imports it!
let bobsImportOfAlicesPublicKey = try RSA(rawRepresentation: alicesPublicKeyData)
// Bob can now verify that Alice signed the message using the Private key associated with her shared Public key.
let verifiedSignature = try bobsImportOfAlicesPublicKey.verify(signature: alicesSignature, for: "Hi my name is Alice!".bytes)
if verifiedSignature == true {
// Bob knows that the signature Alice provided is valid for the message and was signed using the Private key associated with Alices shared Public key.
} else {
// The signature was invalid, so either
// - the message Alice signed was different then what we expected.
// - or Alice used a Private key that isn't associated with the shared Public key that Bob has.
}
CryptoSwift RSA Key -> Apple's Security Framework SecKey Example
/// Starting with a CryptoSwift RSA Key
let rsaKey = try RSA(keySize: 1024)
/// Define your Keys attributes
let attributes: [String:Any] = [
kSecAttrKeyType as String: kSecAttrKeyTypeRSA,
kSecAttrKeyClass as String: kSecAttrKeyClassPrivate, // or kSecAttrKeyClassPublic
kSecAttrKeySizeInBits as String: 1024, // The appropriate bits
kSecAttrIsPermanent as String: false
]
var error:Unmanaged<CFError>? = nil
guard let rsaSecKey = try SecKeyCreateWithData(rsaKey.externalRepresentation() as CFData, attributes as CFDictionary, &error) else {
/// Error constructing SecKey from raw key data
return
}
/// You now have an RSA SecKey for use with Apple's Security framework
Apple's Security Framework SecKey -> CryptoSwift RSA Key Example
/// Starting with a SecKey RSA Key
let rsaSecKey:SecKey
/// Copy External Representation
var externalRepError:Unmanaged<CFError>?
guard let cfdata = SecKeyCopyExternalRepresentation(rsaSecKey, &externalRepError) else {
/// Failed to copy external representation for RSA SecKey
return
}
/// Instantiate the RSA Key from the raw external representation
let rsaKey = try RSA(rawRepresentation: cfdata as Data)
/// You now have a CryptoSwift RSA Key
CryptoSwift is owned and maintained by Marcin Krzyżanowski
You can follow me on Twitter at @krzyzanowskim for project updates and releases.
This distribution includes cryptographic software. The country in which you currently reside may have restrictions on the import, possession, use, and/or re-export to another country, of encryption software. BEFORE using any encryption software, please check your country's laws, regulations and policies concerning the import, possession, or use, and re-export of encryption software, to see if this is permitted. See http://www.wassenaar.org/ for more information.
Copyright (C) 2014-2022 Marcin Krzyżanowski marcin@krzyzanowskim.com This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:
- The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation is required.
- Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- This notice may not be removed or altered from any source or binary distribution.
- Redistributions of any form whatsoever must retain the following acknowledgment: 'This product includes software developed by the "Marcin Krzyzanowski" (http://krzyzanowskim.com/).'
See CHANGELOG file.