This repository contains the code for the paper "InBox: Recommendation with Knowledge Graph using Interest Box Embedding," which has been accepted by VLDB.
The codebase is organized as follows:
main.py
: The main script to run the project.model.py
: Contains the model definitions.dataloader.py
: Contains the data loading utilities.utils/
: Contains utility functions and scripts for data processing and evaluation.
CUDA_VISIBLE_DEVICES=0 python main.py --cuda --dataset=alibaba-fashion -pre -pre_i -train -test
CUDA_VISIBLE_DEVICES=0 python main.py --cuda --dataset=yelp2018 -pre -pre_i -train -test
CUDA_VISIBLE_DEVICES=0 python main.py --cuda --dataset=last-fm -pre -pre_i -train -test
CUDA_VISIBLE_DEVICES=0 python main.py --cuda --dataset=amazon-book -pre -pre_i -train -test -pre_epoch 8
The project includes the following datasets:
- Alibaba Fashion
- Amazon Book
- Last.fm
- Yelp 2018
Each dataset directory contains multiple files such as entity_list.txt
, item_list.txt
, kg_final.txt
, etc.
- Python 3.6+
- PyTorch 1.7+
- CUDA 10.1+
- tensorboardX
- scikit-learn
- tqdm
Ensure that you have a compatible GPU and CUDA installed for running the project.