Skip to content

soc-ucsd/LQG_gradient

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Landscape of LQG problems

This repository contains the MATLAB scripts for reproducing the experiments in our paper

  1. Yujie Tang*, Yang Zheng* and Na Li. Analysis of the Optimization Landscape of Linear Quadratic Gaussian (LQG) Control. Mathematical Programming, under review, 2021 (A short version was accepted at L4DC, 2021) (*Equal contribution)

Instructions

The gradient descent algorithms are implemented in

  • LQG_gd_cano.m (partial gradient over the controllable canonical form)
  • LQG_gd_full.m (full gradient)

Run Example_Doyle.m to see some performance; more examples are included in the Examples folder.

Landscape of dLQR problems (LQR using dynamical output feedback)

The "dLQR" folder contains the Python scripts for reproducing the experiments in our paper

  1. Jingliang Duan, Wenhan Cao, Yang Zheng, Lin Zhao (2022). On the Optimization Landscape of Dynamical Output Linear Quadratic Control. preprint

Run example_1.py to see the learning curves of example 1 in our paper; similar for other five examples.

Releases

No releases published

Packages

No packages published